UNIVERSITY Mechanical & Flarospace UNIVERSITY 101.4/105! Outstanding Job

MAE 3340 INSTRUMENTATION SYSTEMS Design Final Presentation

Pulse Oximeter Prototype Testing

Presenter(s): Landon Terry, Gage Salerno, Chase Halverson

MAE 3340 Lab Section: 509, Pulse Laboratories

Date, Time, Location: 01/05/2014 7:00 MDT ENGR 103

Presentation Outline

- 1. Member Duties
- 2. Team Members and Organizational Chart
- 3. Background summary
- 4. Measurement Requirements
- 5. Design Requirements
- 6. Design Fulfillment
- 7. Data Acquisition and Analysis.
- 8. Results and Recommendations
- 9. Questions
- 10.Extra Information

Team Member Duties

Chief Engineer:

Responsibility for operation of team and workflow.

Systems Engineer:

Maintains a "big-picture" view of component functionality and integration.

Software Engineer:

Writes and maintains software for data acquisition.

Analysis Specialist:

Analyzes collected data for trends and significance.

Information Specialist:

Tracks and compiles data for deliverable items to customer.

Team Members and Organization Chart

Gage Salerno: Chief Engineer

Lisa Montierth: Systems Engineer

DJ Srtingham: Software Engineer

Chase Halverson: Assembly and Analysis Specialist

Karson Halverson: Software and Testing Engineer

Jake Forsyth: Hardware and Assembly Engineer

Landon Terry: Information Specialist

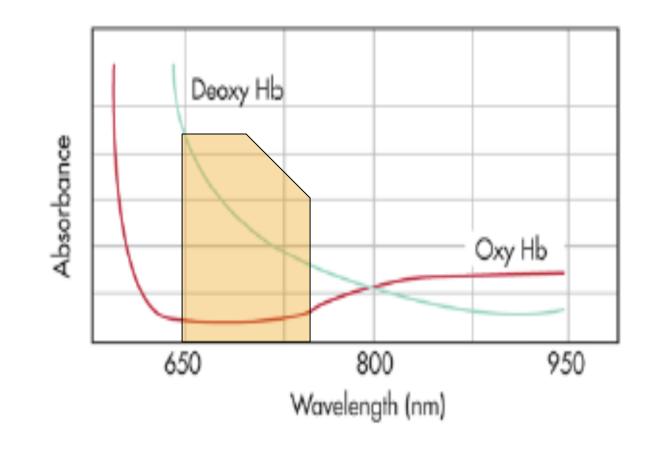
Background Summary

Mission statement:

Design an electrical system to measure resting and recovery heart rates.

Methodology:

Two devices were prototyped: one with a photo resistive sensor and one with a photo generative sensor.

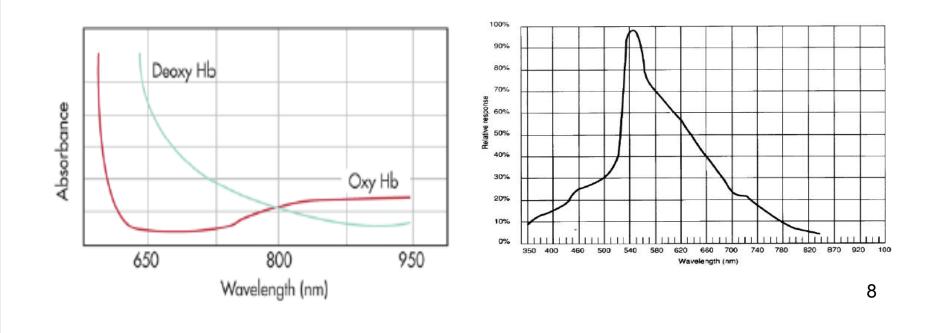

Implementation:

A team of undergraduate USU students designed and built the devices through the MAE Instrumentation class.

Measurement Requirements

Measurement "sweet spot"

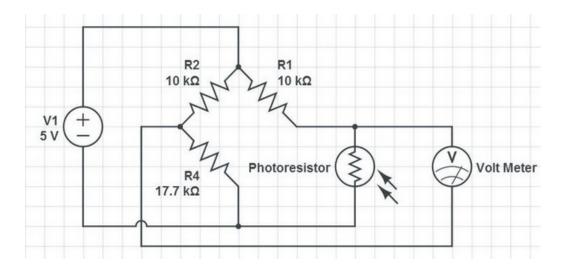
6


Design of Systems: Gage Salerno

Design Requirements: Photo Resistor

Photo Resistor Design requirements:

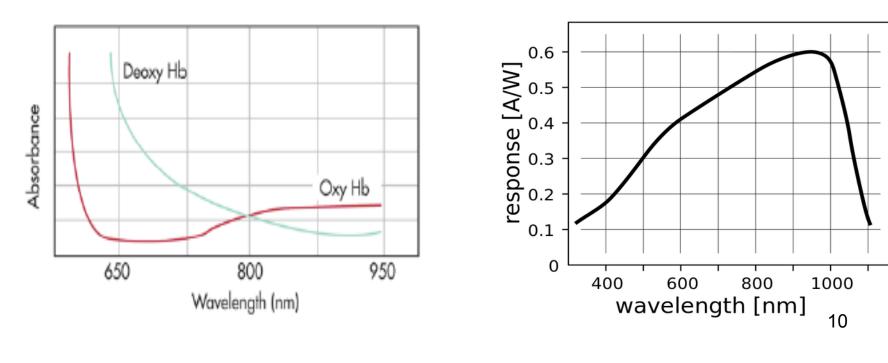
- Sensitivity
- Peak wavelength
- Circuit design



Design Fulfillment: Photo Resistor

Photo Resistor Parts and Components:

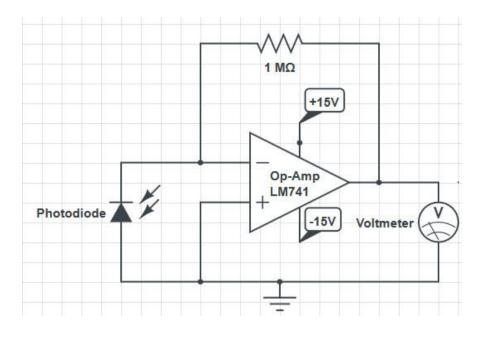
- Design of bridge
- Resistors for bridge
- Pre-analysis



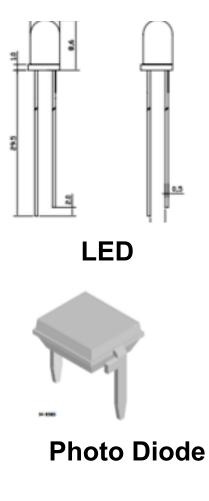
Design Requirements: Photo Generative

Photo Resistor Design requirements:

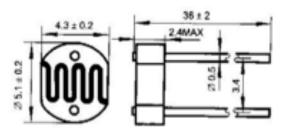
- Sensitivity
- Peak wavelength
- Circuit design



Design Fulfillment: Photo Generative


Photo Resistor Parts and Components:

- Diode
- OpAmp
- Resistor Value



Parts and Components

Pulse Oximeter

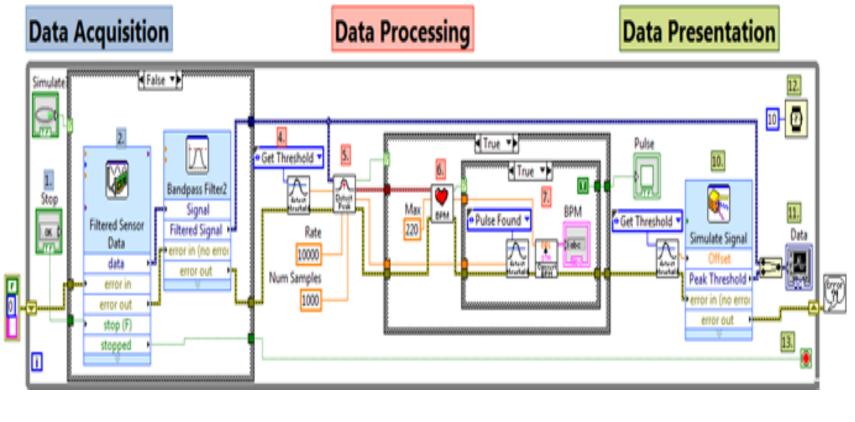
Photo Resistive Cell

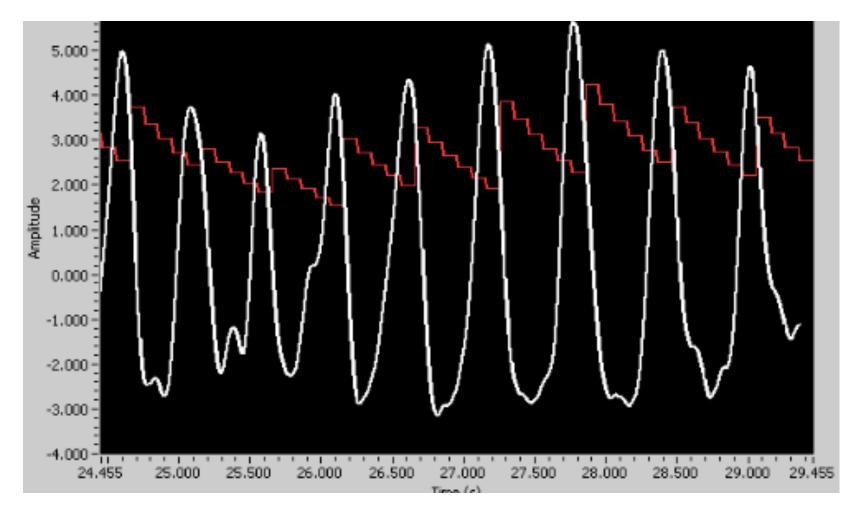
Assessment of Design

Photo resistive Sensitivity issues

Sensor Isolation

LED externally powered


Photo Generative Results Issues Resolution



Software Flowchart

Software Example Test

16

Statistical Results Analysis: Chase Halverson

Data Acquisition and Analysis

Student t distribution analysis was used due to small sample set

Confidence Interval
$$\overline{x} - t_{c/2,v} \cdot \frac{S_x}{\sqrt{n}} \le \mu_x \le \overline{x} + t_{c/2,v} \cdot \frac{S_x}{\sqrt{n}}$$

t test: Degrees of freedom

$$V = \frac{\left[\left(S_{1}^{2}/n_{1}\right) + \left(S_{2}^{2}/n_{2}\right)\right]^{2}}{\frac{\left(S_{1}^{2}/n_{1}\right)^{2}}{n_{1}-1} + \frac{\left(S_{2}^{2}/n_{2}\right)^{2}}{n_{2}-1}}$$

t test: Distribution value

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\left(S_1^2 / n_1\right) + \left(S_2^2 / n_2\right)}}$$

Data Results: Photo Generative (resting heart rate)

Confidence Interval

 $71.272 \le \mu x \le 79.870$

Student t test

v=Degrees of Freedom (calculated)	6.150751704
Round Degrees of Freedom Down	6
Confidence Interval (percent)	95
t value at $0.95/2$ and v=6	2.446
Calculated t	1.453820777

Table 9: t-Test Comparison Results for Photo Generative (Resting Heart Rate)

Summary and Conclusion

Lessons Learned:

Data collection issues and solutions Software issues

Assessment of Design:

Final recommendation: Photo generative sensor system More accurate

Assessment of test results:

Statistical significance Results compared to national data

Appendix B: References and Citations

1. Millikan G. A. (1942). "The oximeter: an instrument for measuring continuously oxygen-saturation of arterial blood in man". *Rev. Sci. Instrum* 13(10): 434- 444. doi:10.1063/1.1769941.

2. Torres, D., "Build A Wrist Heart-Rate Monitor Using An Ultra-Low-Power MCU," Electronic Design, http://electronicdesign.com/digital-ics/build-wrist-heart-rate-monitor-uultra-low-power-mcu, [Retrieved 22 April 2014].

3. Harden, Scott W. "Single Wavelength Pulse Oximeter." *SWHardencom*. N.p., 06 Dec. 2012. Web. 22 Apr. 2014. http://www.swharden.com/blog/2012-12-06-single-wavelength-pulse-oximeter/.

4. "Lambert-Beer Law." *Lambert Beer Law.* N.p., n.d. Web. 22 Apr. 2014. <http://www.optek.com/ Lambert_Beer_Law.asp>.

5. Nshimiyimana, M. "Summer Internship 2012 Physical Computing with Arduino." *Arduino Projects*. N.p., n.d. Web. 22 Apr. 2014. http://arthur.sewanee.edu/marcen0/HTML5T/arduino/.

6. "Light Dependent Resistors - LDR." *Light Dependent Resistors - LDR*. N.p., n.d. Web. 22 Apr. 2014. http://www.mcuexamples.com/sensors/Sensors-Light-Dependent-Resistors.php>.

7. Ekelof, S. "The Genesis of the Wheatstone Bridge". Published in "Engineering Science . and Education Journal", Vol. 10, No. 1, February 2001, pages 37–40.

8. Brooker, G, *Introduction to Sensors for Ranging and Imaging*, ScitTech Publishing, 2009 ISBN 9781891121746 page 87

9. "Build Your Own Heart Rate Monitor, Part 1 of 4: Overview." - *National Instruments*. National Instruments, 22 Aug. 2012. Web. 22 Apr. 2014. http://www.ni.com/white-paper/14248/en/.

10. Whitmore, S. Ph.D., (2014). "Lab 5 Programming Template." Web. 25 Apr. 2014. . < http://www.neng.usu.edu/classes/mae/3340/MAE3340_web_main.html>.

11. Ostchega, Y. "Resting Pulse Rate Reference Data for Children, Adolescents, and Adults: United States, 1999-2008." National Health Statistics Report, 24 Aug 2011. http://www.neng.usu.edu/classes/mae/3340/ Project/nhsr041.pdf>. [Retrieved 22 April 2014]

12. Watanabe, J. "Heart Rate Recovery Immediately After Treadmill Exercise…" American Heart Association, 2001. http://www.neng.usu.edu/classes/mae/3340/Project/Active_Heart_Rate_Survey.pdf>

Heart rate data: Photo Resistor

Name	Resting (BPM)	(BPM)
Gage Salerno	72	140
Karson Halverson	68	160
Chase Halverson	79	160
Lisa Montierth	74	160
Jacob Forsyth	72	163
Landon Terry	76	160
David Stringham	79	170
Mean	74.28571429	159
Standard Deviation	4.029652	9.146948489
Number of Samples	7	7

Heart rate data: Photo Generative

Name	Resting (BPM)	(BPM)
Gage Salerno	68	128
Karson Halverson	75	130
Chase Halverson	74	130
Lisa Montierth	80	140
Jacob Forsyth	82	132
Landon Terry	73	136
David Stringham	77	135
Mean	75.57142857	133
Standard Deviation	4.649628761	4.203173404
Number of Samples	7	7

Results and Discussion

National values for heart rate:

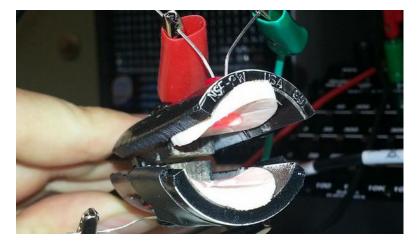

Mean (BPM)	154
Standard Deviation	20
Number of Samples	4633

Table 4: National Data for Average Active Heart Rate [12]



Concept of Operations

Construction of device: PVC pipe Clothespins foam

Data capture: Shielding Techniques Noise reduction Capture of data

Data Results: Photo Resistor (resting heart rate)

Confidence Interval

 $70.561 \le \mu x \le 78.011$

Example: Student t test

v=Degrees of Freedom (calculated)	6.208703128
Round Degrees of Freedom Down	6
Confidence Level (percent)	95
t value at 0.95/2 and v=6	2.446
Calculated t	0.836976967

Table 5: t-Test Comparison Results for Photo Resistor (Resting Heart Rate)