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Notes on the Discrete Fourier Transtform
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* Any periodic function can be broken up into an infinite Series of sines and cosines ...

using Fourier series

A,

“Harmonic Coefficients”

y(t) ="+ E(A" cosnw,t + B, sinnw,t ) (Fourier Series)
n=1

2

\\

“Fundamental frequency”

“Harmonic Order’”’

2

T

2

27 .27
5= [2] [y@sinoogar T 7] s
T 0

A = [%] Z y(T)cos(nw,t)dt A = [3] [y(r)cos(zTnm:)dT

e T --> period
W, = 25f ,=2m/T

* A,/2 is the “mean” or DC level of the signal
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Generalized Waveforms: Fourier Series (2)

e Any periodic wave form may be represented by its Fourier

Series “Harmonic Coefficients”
¥(1) = 2+ 3 (A7 Cos o, +'B, sinnw,) (Fourier Series)
2 n=1 / ‘\
“Harmonic “Harmonic Order” “Fundamental frequency”
Coefficients”
- 27 * Can be used to represent Some
w.1 pretty interesting waveforms
A = [—(’] f y(T)cos(nw,t)dt
T 0 fo =" fundamental frequency"
2m
== 1
W Wo fO = ; — W, = 2.717‘]%
B =|— f y(t)sin(nw,t)dt
T 0 —s 2_75 =T Dy
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Fourier Series (3)

e Periodic Waveform, T' = Waveform Period

fo =" fundamental frequency"

1 21
Jo =77 0 = 27fo =

27T

— — =T |—
wO

2
T “equivalent forms”

Do
n

21

W, 27

A = [;] jy(t)cos(nwot)dr = (%) jo'y(r)cos(7.n -r) dt

21

B = [wo ] jy(r)sin(na)or)d‘c = (%) {y(r)sin(z% ‘n -17) dt

JT
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Applications of Fourier Analysis

Can be used for four cases:
1) The function y(t) 1s known analytically (Fourier series)

2) The function y(t) is an analog signal, electronic equipment
can be purchased to perform this analysis (old-school tech)

3) The waveform is digitally sampled and y(t) is stored
for discrete points in time. Discrete equations are
required for numerical computations ...

“Discrete Fourier Transform”

4) Processing of the Spectrum Allows Data to be Filtered!
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The Complex Fourier Transform
Consider the A, B Fourier Series Coefficients
21 % 27
A = l?] { Y(T)COS(ZETT o T s period
B _lg] } (T)Sin(z—ﬂ:n’l,')d’t Wo = 2Ho=2mt
=7 Y - ) l 2
T
T)cos(—nt)dt
= - f y(T)cos(—=nT)
let—>Y=A”_j.B”—>where j2=_1 Yn=5. ? 2 L 27 )
' T —j-|= 7)sin(=—nt)dt
e _][T]{)’() e
Further — define complex exponential as 9
e’’ =cosf - j-sinf 11 T
] 1 fy(r) cos(z—ﬂnr)—j-sin(z—nnr) dt =
COSH=e] te” -T- 0 T T
— equivalently... o i 117 _ ]2_75,,”,
ing=<_—C — e T -dr
sing - ¢ T {y( )
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Substitute complex exponential for sin and cosine terms in Fourier series

()= % + i(An cosnw,t+ B, sinna)ot) =
=1
ﬁ i N eJ-(zTn-n.l) N e—J (7”,”) . ej.(%ﬂ.n.z) ) e_j.(%ﬂ,m) )
2 “ " 9 n 2 _

0 | >

+i %(An -J Bn)ej'(T'n't))+E

n=1

n=1
ook at second term .... /

(27

(2
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The Complex Fourier Transform (3)
From previous slide

Engineering

e e}

>

n=1

From Fourier Coefficient definition

—00

%(An +j Bn)e_j'(zf'”'t)) _ 2

n=-1

%(A_ +j-B_n)ej'(T'

21 27T 2] 7 27T
A =|— T)coS(——n-T)dT =|— T)cos(—n-T)dTt =A
. THy() (- _T_{ym (Z-nT) .
g 27T (2] 7 27T
B — T)sin(———n-t)dt =—-|— T)sin(—n-t)dt =-B
., {y() (== =n-T) _T_{yu (F-nT) ;

Thus from above
2 (A, +j°B,) j'(;'”"))= El(%(An_j-Bn)ej'(f”*)]
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Further, since ....

Thus .... y@)

Complex Fourier ° 5
. . 0 j'—‘l’l't
Series Equivalent ... () = 2 (Yn e’ T )
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A, 1 , 21 % . 2m
—=5'(A0 —]-BO)..because...BO =!?] {y(r)sm(7-0-t)dr =0

2

_ %“LE(A” cosnwyt + B, sinna)ot) =
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The Complex Fourier Transform (5)

Compare series representations

Real Series .....

A, =2-R,(Y,)
B, =-2-Im(Y,)

Complex Series ....

Yn=An—]°Bn
2

T

y(t) = %+E[A cos(z—ﬂn t)+B s1n(

l } y(r)cos(z%nr)dr

J
l ] }y(t) sin(z% nt)dt

=

“Mathematically
Identical”

Complex series 1s far easier to implement on a computer 10

Engineerin ag
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Discrete Fourier Transform

Look at Discrete Signal Sampled at time interval AT

A

y(t)

Discrete sample Analog signal
/

Vi = {)’o s YiaroYoar T “"yN'At}

k —> " time index " — N +1=number of data samples
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Discrete Fourler Transform (2)

“Record Length” of sampled signal is equivalent to the
Fundamental period

yk = {yO ’yl-At ’y2-At + “"yN-At} — N +1=number of data samples

2n_ 27T
T N-At

I'=sN-At o, =

Approximate Complex Coefficient Integral by a Discrete Sum

'1 T _j.n.ZJ'L'.T
Y =|— e’ I dr—
_T] {y( )

n

N - At
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Discrete Fourier Transform (3)

2

Y = %E%e_]lw\ ] —n=4{0,1,2,..}

k=(%,, . Frequency index
ime index Computer

Corresponding to ... frequency ... Implementation of

Fourier Series
f,=nAf=n-—= Analysis

... Y are the discrete frequency components of the spectrum

Summation 1s
f, = " N At =T =record length Repeated for
N-AT | Each fundamental
t, = k- At — sample time frequency harmonic
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] —-n=4{0,1,2,.N/2}

E)’k _J[
N/2 1

" NA=T = Sy = =/
f, = N-AT N At =T =record length % N - AT 2-AT NYQ

t, = k- At — sample

2T ok

N/2 - harmonic correspondng
How to reconstruct signal from  To Nyquist frequency
discrete harmonics

N/2 _ {27, N-1 _ {27,
y(k t)=nz Y,-e A5 +n§+l Y, e A5
2
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Discrete Fourier Transform (5)

e Compare DTF to Fourier series .

Discrete coefficients

A, B coefficients

n=0,1,..,N2
I'=N-At
N/2 ]
Ix=NTar “zoar e

_/

Complex coefficients

i oy T 5 ]
A = l?] {y(r)cos(?ﬂnr)dr | T _jlz%m
i Y, =|=|[y()e T ldr
B =|Z| (y@)sin(ZZ nr)dr T
n T { y T _ 0 _
T --ngceri;)dﬁ An = ZRe(Yn)
W, = =27
0T B =-2Im(Y,)
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Discrete Fourier Transform (6)

e The D.F.T. can also be decomposed into real sine and cosine
series (this is how your text book — Beckwith -- does it)

N . .
A = %Ey(km)cos(W) n=0,1,...,N/2

k=1

2n-k'n) n=1,2,...,N/2-1

2 -
B = N; y(kAt)sm( (N 1s even)

e Inverse transform is

N/2-1
Ve = i"' E
2 n=1

A cos(z—nn-k-At)+Bn sin(z—nn-k-At) +Mcos(2—nN-k-t/2)
T T 2 T

* Almost never used in practice ...Because of Fast Fourier Transform ...
Is far easier to implement in complex number form
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Discrete Fouriler Transform (7)

e DFT Notes

e Y components are generally complex-valued with real and imaginary
components

* First sample Y, of the transformed series 1s the DC component, and is real-
valued

e The DFT of a real series, ie: a physical series, results in a symmetric frequency
spectrum series about the Nyquist frequency.

e Elements from n=0 ...n = N/2 .. Correspond to “real frequencies”
* fy,» 18 the nyquist frequency
e Elements from n=N/2+1 ... n = N.. Are mathematical artifacts

Correspond to non-physical “negative frequencies” ... necessary for inverse
transform to give a real-values result

MAE 3340 INSTRUMENTATION SYSTEMS 17
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Discrete Fourier Transform (8)
* DFT Notes

» The spectrum points corresponding to negative frequency are the complex conjugate of
the positive frequency spectrum values.

* The highest positive (or negative) frequency sample is called the Nyquist frequency.
Highest frequency component that should exist in the input series for the DFT to
yield "uncorrupted"” results.

* More specifically if there are no frequencies above Nyquist the original signal can be
exactly reconstructed from the samples.

e The minimum frequency that can be resolved in a DFT spectrum is equal to One over
the sample record length

MAE 3340 INSTRUMENTATION SYSTEMS 18
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N/2 _j.(%n.n.k) NI _J(%nnk)
y(k-t)=2 Y,-e + E Y\ '€
n=0 n=—+l1
10000~
Nega ive fre quen ies
1000-
QU
o
=
=
o
1]
= 100-
10-
6-) I I I I I I I I
-150 -100 -50 0 50 100 150 200 250
Frequency, Hz

» Negative Frequencies get ... folded to upper half of spectrum
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Discrete Fourier Transtform Labview VI

Real FFT
X —— T 0 *X is a real valued input vector function

shift? -
size _,— }‘{“} error .
il *['FT(x) is a complex valued output vector

DBL X is a real vector.

TE shift? specifies whether the DC component is at the center of FFT {X}. The default is FALSE.

EFEE

FFT size is the length of the FFT you want to perform. If FFT size is greater than the nu~Lcr of elements in X, this VI adds zeros to the end of X to
match the size of FFT size. If FFT size is less than the number of elements in ¥, vnis VI uses only the first n elements in X to perform the FFT,
where n is FFT size. If FFT size is less than or equal to 0, this VI u==_ «ne length of X as the FFT size.

FFT {X} is the FFT of X.
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into
an error cluster.
For 1D signals, the FFT VI computes the discrete Fourier transform (DFT) of the input sequence
t with a fast Fourier transform algorithm. The 1D DFT is defined Proper Definition .
N-1 N |27
_jemkn N 1 - 2]
b = 3, xne™I2TO ! V== e "
n=0 forn=20,1,2,..,N-1 N k=0

where x is the igput sequence, N is the number of elements of x, and Y is the transform result.

The frequency refolution, or the frequency spacing between the components of Y, is:
af o fs Labvz.ev.v VI does N .
N not divide by N Y =—°(An—]'Bn)

Riabyi
where f¢ is the sampling frequency. arew 2
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Discrete Fourler Transform Labview VI (2)

e “Upper” half of
Spectrum is complex

Conjugate of .- :
“Lower” half ... £+ -y

With reversed order!

V)= e fimiAf == — ,{i=ﬁ+1,ﬁ+2, ....... N}=
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Inverse Discrete Fourier Transtform Labview VI

Inverse Real FFT

S *FFT(x)is a complex valued input vector
shift? - n .
e *X is a real valued output vector

FFT {X} is the complex valued input sequence, which should be conjugated centrosymmetric except for the first element. This instance uses only
the anterior half of FFT {X}.

shift? specifies whether the DC component is at the center of FFT {X}. The default is FALSE.
X is the inverse real FFT of FFT{X}.

-3
-
EI

error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into
an error cluster.

For a 1D, N-sample, frequency domain sequence Y, the IDFT is defined as:

1ML semkn i N .
N = e Yk=?.(Ak_.].Bk)

forn=0,1,2,.. N-1. x =x(n-At)
n
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Inverse Discrete Fourier Transform Labview VI (2)

Inverse Real FFT

A — *FFT(x) is a complex valued input vector
shift? - n .
e *X is a real valued output vector

FFT {X} is the complex valued input sequence, which should be conjugated centrosymmetric except for the first element. This instance uses only
the anterior half of FFT {X}.

shift? specifies whether the DC component is at the center of FFT {X}. The default is FALSE.
t06L] | X is the inverse real FFT of FFT{X}.

error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into
an error cluster.

When FFT {X} is the Fourier transform of a 1D real time-domain signal with length N, the posterior half part of FFT {X} can be constructed by the anterior half
part. The centrosymmetric relationship between the anterior and posterior half part of FFT {X} can be written as

" N
fN_f‘ = f’ ) ! =11 2;"'1 \_EJ

!

where f; is the element in FFT {X}.

g
The Inverse Real FFT instance VI uses only the anterior half part, from fy to f_lz to perform the inverse real FFT, where I.'J means the floor operation.
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Fast Fourier Transform (6)
e The Discrete Fourier Transform (DFT) 1s used to
produce frequency analysis of discrete non-periodic signals.

* The FFT is another method of achieving the same result, BUT

it 1s incredibly more efficient, often reducing the computation

time by hundreds .. same improvement as flying in a jet aircraft versus
walking!

e [t the FFT were not available, many of the techniques
described in this class would not be practical.

An FFT computation takes approximately N*log2(N) operations,
whereas a DFT computation takes approximately N*N operations,
so the FFT is significantly faster.

Speed ratio = N/log(N) ...> 4096 pts --> 492 times faster

MAE 3340 INSTRUMENTATION SYSTEMS 24
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Fast Fourier Transform (2)

* While the FFT only requires a few dozen lines of code, it 1s

one of the most complicated algorithms in DIGITAL
SIGNAL PROCESSING. (DSP)

* FFT operates by decomposing an N point time domain signal
into N time domain signals each composed
of a single point.

e SECOND step 1s to calculate the N frequency spectra
corresponding to these N time domain signals.

* Finally, the N spectra are synthesized into a single
frequency spectrum.

MAE 3340 INSTRUMENTATION SYSTEMS 25
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Fast Fourier Transform (3)

1 signal of

16 points [0 123456789 101112131415 |
2 signals of /\

8 pornts o246 8101214 |[135 709 111315]|

. /\ /\

:;‘fl:i“f 0 48 12|26 10 14][1 5 9 13][3 7 11 15|
Y N N N
poms [0 8][4 12][210][6 14] [ 9] [5 B3] [3 1] [7 5]
Y A A AW T
tpome  [9][8][4][2][2] co] (6] fa] ][] 5] es] (3] [ty [7] n5]

The FFT decomposition. An N point signal is decomposed into N signals each containing a single point. [2[blc[d]
Each stage uses an interlace decomposition, separating the even and odd numbered samples.

Sample numbers
in normal order

Sample numbers
after bit reversal

Decimal Binary Decimal Binary

0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 |:" > 6 0100
7 0111 14 1110
8 1000 1 0001
2 1001 2 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

The FET bit reversal sorting. The FFT time domain decomposition can be implemented by
sorting the samples according to bit reversed order.

Time Domain

Frequency Domain
< [A[B[C]D]
[a[o]v]0]cT0d]0] < [A[B[CDIABICID]
(e[£]z]n]
KK * X 5ius0id
PFE
[oTeJolfTol=l0]n] < E[F[GHEIF[GIH

The FFT synthesis. When a time domain signal is diluted with zeros, the frequency domain is
duplicated. If the time domain signal is also shifted by one sample during the dilution, the spectrum
will additionally be multiplied by a sinusoid.

e ref: http://WWW.dspguide.com/chl2/%.611tm
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Fast Fourier Transtform (4)

* Most common FFT algorithm required that sample length
Be a power number of two data points

N=2L o 1=234,....

* You will NOT be required to develop an FFT algorithm
in the class ... Labview has a whole suite of FFT-Based signal
processing codes
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Signal Processing Using DFT

* We can “mechanize” the response of a system to an arbitrary
Input using the Forward and Inverse Discrete Fourier transform

Non
|_l>‘ dimensional

— [compute non dimensional time (2 t/T) timetime
Waveform Selecty Select} ¥ [oel 2 x
|: — |Original waveform| I £3
wave (time] '
Step Input form remove |mean (DC) value|
Parameters| [ ¢=>ciet ”' mean (DC) Value T
(== l HH compute inverse transform o-JE
Inut WAVE Date] F:‘E“ ! kﬁep lrde:ti)l part (imaginary
- shou e ~ Zero)
@: take DFT
compute |k transform Mz
sample interval L F N Cin b lot results boa i)
SAMPLE Input Data] pemeee :
™ 5 |pelrform convolution| ﬂ [convolved waveform|waveform Plot
— with nondimensional
=] [scale Smgctrum rescale datal add back in mean value|  |[time
multiplied by DC gain

System
Response

Specification | § |

................

................

! [compute system
A\ |frequency response

* But be

sure to build

upper half

e DFT scaling ...

included “upper half”’
Of spectrum

28
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DFT Applications ... Noise Canceling
headsets

e Essentially, this involves using a
microphone, placed near the ear,

and electronic circuitry which
generates an "antinoise" sound wave
with the opposite polarity of the sound
wave arriving at the microphone.

This results in destructive interference,
which cancels out the noise within the
enclosed volume of the headphone
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“Simple” Noise Canceling Logic Written 1n
Labview
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0000000000000 000000000000000000000000000000000000000000000000000000000000000020

Waveform Select}

[compute non dimensional time (2 t/T)|

|Original waveform|

Step Input
Parameters

time
wave E
form remove mean (DC) value | [Waveform Plot]
select f=p mean (DC) Value f @
e e e T e

y
| compute

sample interval

System
Response

SAMPLE Input Data]
==

True ¥

second order

2nd

order

Specification

— + =] spect

take DFT
transform

d

perform convolution|
T

[convolved waveform|

°tl [scale spectrum

|
[rescale datal

compute system
frequency response

add back in mean value
multiplied by DC gain

compute inverse transform
keep real part (imaginary
should be ~ zero)

[Summed Waveform|

e False ~p[™

0000000000000 000000000000000000000000000000000000000000000000000000000000000020




