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Notes on the Discrete Fourier Transform	
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Fourier Series (1)	

• Any periodic function can be broken up into an infinite Series of sines and cosines … 
using Fourier series 	
 “Harmonic Coefficients”	


“Harmonic Order”	


(Fourier Series)	
y(t) = A0
2
+ An cosnω0t + Bn sinnω0t( )

n=1

∞

∑

“Fundamental frequency”	


An =
ω
π
⎡

⎣⎢
⎤

⎦⎥
y(τ )

0

2π
ω

∫ cos(nω0τ )dτ

Bn =
ω
π
⎡

⎣⎢
⎤

⎦⎥
y(τ )

0

2π
ω

∫ sin(nω0τ )dτ

 =
An =

2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
nτ )dτ

Bn =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
nτ )dτ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

• T --> period	

ω0 = 2πf0=2π/T	


y(0)----->	

• A0/2 is the “mean” or DC level of the signal	

A0
2
=
1
2
2
T
⎡

⎣⎢
⎤

⎦⎥
y(τ )

0

t

∫ cos(0 ⋅ω0τ )dτ →

A0
2
=
1
T
⎡

⎣⎢
⎤

⎦⎥
y(τ )

0

t

∫ dτ = ymean
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Generalized Waveforms: Fourier Series (2)	

• Any periodic wave form may be represented by its Fourier 	

  Series 	
 “Harmonic Coefficients”	


“Harmonic Order”	


(Fourier Series)	
y(t) = A0
2
+ An cosnω0t + Bn sinnω0t( )

n=1

∞

∑

“Fundamental frequency”	


An =
ω0

π
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

2π
ω0

∫ cos(nω0τ )dτ

Bn =
ω0

π
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

2π
ω0

∫ sin(nω0τ )dτ

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

• Can be used to represent Some 
pretty interesting waveforms	


f0 = " fundamental  frequency"

f0 =
1
T
→ω0 = 2π f0 =

2π
T

→
2π
ω0

= T →
ω0

π
=
T
2

“Harmonic 	

Coefficients”	
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Fourier Series (3)	

• Periodic Waveform, T = Waveform Period 	


f0 = " fundamental  frequency"

f0 =
1
T
→ω0 = 2π f0 =

2π
T

→
2π
ω0

= T →
ω0

π
=

2
T “equivalent forms”	


An =
ω0

π
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

2π
ω0

∫ cos(nω0τ )dτ = 2
T
⎛
⎝⎜

⎞
⎠⎟

y(τ )
0

T

∫ cos 2π
T
⋅n ⋅τ⎛

⎝⎜
⎞
⎠⎟
dτ

Bn =
ω0

π
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

2π
ω0

∫ sin(nω0τ )dτ = 2
T
⎛
⎝⎜

⎞
⎠⎟

y(τ )
0

T

∫ sin 2π
T
⋅n ⋅τ⎛

⎝⎜
⎞
⎠⎟
dτ

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Applications of Fourier Analysis	


5	


“Discrete Fourier Transform”                                   	
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The Complex Fourier Transform 	


An =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
nτ )dτ

Bn =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
nτ )dτ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

• T --> period	

ω0 = 2πf0=2π/T	


Consider the A, B Fourier Series Coefficients	


!	


Yn =
1
2
⋅

2
T
⎡

⎣⎢
⎤

⎦⎥
 

y(τ )
0

T

∫ cos(2π
T
nτ )dτ

− j ⋅ 2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
nτ )dτ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
nτ )− j ⋅sin(2π

T
nτ )

⎡

⎣⎢
⎤

⎦⎥
dτ =

1
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ ⋅e− j⋅
2π
T nτ

⋅dτ

let→Yn =
An − j ⋅Bn

2
→where,

j = −1
j2 = −1
1
j
= − j

 

Further→ define complex exponential as
e j⋅θ = cosθ − j ⋅sinθ

→ equivalently... 
cosθ = e j⋅θ + e− j⋅θ

2

sinθ = e j⋅θ − e− j⋅θ

2 ⋅ j
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The Complex Fourier Transform (2) 	

Substitute complex exponential for sin and cosine terms in Fourier series	


Look at second term …. 	


1
2
An + j ⋅Bn( )e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=1

∞

∑ =
1
2
A−n + j ⋅B−n( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

−1

∑

y(t)= A0
2
+ An cosnω0t + Bn sinnω0t( )

n=1

∞

∑ =

A0
2
+ An ⋅

e
j⋅ 2π

T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟
+ e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟

2
+ Bn ⋅

e
j⋅ 2π

T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟
− e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟

2 ⋅ j

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟n=1

∞

∑ =

A0
2
+

1
2
An − j ⋅Bn( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=1

∞

∑ +
1
2
An + j ⋅Bn( )e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=1

∞

∑
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The Complex Fourier Transform (3) 	

From previous slide 	


1
2
An + j ⋅Bn( )e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=1

∞

∑ =
1
2
A−n + j ⋅B−n( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

η=−1

−∞

∑

A−n =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(− 2π
T
n ⋅τ )dτ = 2

T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
n ⋅τ )dτ = An

B−n =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(− 2π
T
n ⋅τ )dτ = − 2

T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
n ⋅τ )dτ = −Bn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Thus from above	


1
2
An + j ⋅Bn( )e

− j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=1

∞

∑ =
1
2
An − j ⋅Bn( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

−1

∑

From Fourier Coefficient definition	




MAE 3340 INSTRUMENTATION SYSTEMS	
 9	


The Complex Fourier Transform (4) 	

Further, since ….	


Thus …. 	


A0

2
=

1
2
⋅ A0 − j ⋅B0( )...because... B0 =

2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
⋅0 ⋅τ )dτ = 0

y(t)= A0
2
+ An cosnω0t + Bn sinnω0t( )

n=1

∞

∑ =

1
2
A0 − j ⋅B0( )+ 1

2
An − j ⋅Bn( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+

1
2
An − j ⋅Bn( )e

j⋅ 2π
T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

1

∑
n=1

∞

∑ =

An − j ⋅Bn( )
2

e
j⋅ 2π

T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

∞

∑ = Yn ⋅ e
j⋅ 2π

T
⋅n⋅t

⎛

⎝
⎜

⎞

⎠
⎟⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

∞

∑

Complex Fourier 
Series Equivalent …  	


Yn =
1
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ ⋅e− j⋅
2π
T ⋅n⋅τ

⋅dτ

y(t)= Yn ⋅e
j⋅2πT ⋅n⋅t⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

∞

∑
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The Complex Fourier Transform (5) 	

Compare series representations	


Real Series …..	


Complex Series ….  	


y(t)= A0

2
+ An cos 2π

T
n ⋅ t

⎛

⎝
⎜

⎞

⎠
⎟+ Bn sin 2π

T
n ⋅ t

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=1

∞

∑

An =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
nτ )dτ

Bn =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
nτ )dτ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Yn =
1
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ ⋅e− j⋅
2π
T ⋅n⋅τ

⋅dτ

y(t)= Yn ⋅e
j⋅2πT ⋅n⋅t⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n=−∞

∞

∑Yn =
An − j ⋅Bn

2

“Mathematically 
Identical”	


An = 2 ⋅Re Yn( )
Bn = −2 ⋅ Im Yn( )

Complex series is far easier to implement on a computer	
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Discrete Fourier Transform 	

Look at Discrete Signal Sampled at time interval ΔT   	


yk = y0, y1⋅Δt , y2⋅Δt + ....yN ⋅Δt{ }
k→"time index" → N +1= number of  data samples
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Discrete Fourier Transform (2) 	

“Record Length” of sampled signal is equivalent to the	

Fundamental period	


yk = y0, y1⋅Δt , y2⋅Δt + ....yN ⋅Δt{ }

T ≡ N ⋅ Δt→ω0 =
2π
T

=
2π
N ⋅ Δt

→ tk = k ⋅ Δt

Approximate Complex Coefficient Integral by a Discrete Sum

Yn =
1
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ ⋅e− j⋅n⋅2πT ⋅τ
⋅dτ →

Yn ≈
1

N ⋅ Δt
⎡

⎣⎢
⎤

⎦⎥
 yk ⋅

k=0

N

∑ e− j⋅n⋅ 2π
N⋅Δt k⋅Δt( )

⋅ Δt = 1
N
⋅  yk ⋅

k=0

N

∑ e− j⋅2πN ⋅n⋅k

→ N +1= number of  data samples
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Yn =
1
N

yke
− j 2π

N
⋅n⋅k

⎡
⎣⎢

⎤
⎦⎥

k=0

N

∑ → n = {0,1,2,..}

13	


Discrete Fourier Transform (3) 	


… Yn are the discrete frequency components of the spectrum	


Frequency index	

Time index	


fn =
n

N ⋅ ΔT
→ N ⋅ Δt =T ≈ record  length

tk = k ⋅ Δt→ sample time

Corresponding to … frequency …	


  
fn = n ⋅ Δf = n ⋅ 1

T
=

n
N ⋅ ΔT

Computer	

Implementation of	

Fourier Series	

Analysis	


Summation is	

Repeated for	

Each fundamental	

frequency harmonic	
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Yn =
1
N

yke
− j 2π

N
⋅n⋅k

⎡
⎣⎢

⎤
⎦⎥

k=0

N

∑ → n = {0,1,2,..N / 2}

14	


Discrete Fourier Transform (4) 	


fn =
n

N ⋅ ΔT
→ N ⋅ Δt = T ≈ record  length

tk = k ⋅ Δt→ sample   
f N

2

=
N / 2

N ⋅ ΔT
=

1
2 ⋅ ΔT

= fNYQ

N/2 -! harmonic correspondng	

To Nyquist frequency	


y(k ⋅ t)= Yn ⋅e
− j⋅ 2πN ⋅n⋅k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n=0

N /2

∑ + Y *
N−n ⋅e

− j⋅ 2πN ⋅n⋅k
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n=N
2
+1

N−1

∑

How to reconstruct signal from  
discrete harmonics	




MAE 3340 INSTRUMENTATION SYSTEMS	
 15	


Discrete Fourier Transform (5)	

• Compare DTF to Fourier series …	


Yn =
1
N

yke
− j 2π

N
⋅n⋅k

⎡
⎣⎢

⎤
⎦⎥

k=0

N

∑
n = 0, 1,. . . , N/2	


  
f N

2

=
N / 2

N ⋅ ΔT
=

1
2 ⋅ ΔT

= fNYQ

An =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ cos(2π
T
nτ )dτ

Bn =
2
T
⎡

⎣⎢
⎤

⎦⎥
 y(τ )

0

T

∫ sin(2π
T
nτ )dτ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

• T --> period	

ω0 = 2πf0=2π/T	


A, B coefficients	


Yn =
1
T
⎡

⎣⎢
⎤

⎦⎥
y(τ )

0

T

∫ e
− j 2π

T
nτ

⎡
⎣⎢

⎤
⎦⎥dτ

Complex coefficients	


An = 2Re(Yn )
Bn = -2Im(Yn )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Discrete coefficients	

 T = N ⋅ Δt
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Discrete Fourier Transform (6)	

• The D.F.T. can also be decomposed into real sine and cosine 

series (this is how your text book – Beckwith -- does it)	


• Inverse transform is	


An =
2
N

y(kΔt)cos 2π ⋅ k ⋅n
N

⎛
⎝⎜

⎞
⎠⎟k=1

N

∑

Bn =
2
N

y(kΔt)sin 2π ⋅ k ⋅n
N

⎛
⎝⎜

⎞
⎠⎟k=1

N

∑

n = 0, 1,. . . , N/2	


n = 1, 2, . . ., N/2 -1	

(N is even) 	


yk =
A0
2
+ An cos

2π
T
n ⋅ k ⋅ Δt

⎛

⎝
⎜

⎞

⎠
⎟+ Bn sin

2π
T
n ⋅ k ⋅ Δt

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=1

N /2−1

∑ +
AN /2

2
cos 2π

T
N ⋅ k ⋅ t / 2

⎛

⎝
⎜

⎞

⎠
⎟

• Almost never used in practice  …Because of Fast Fourier Transform …	

Is far easier to implement in complex number form	
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Discrete Fourier Transform (7)	


• DFT Notes	

• Yn components are generally complex-valued with real and imaginary 

components	


• First sample Y0 of the transformed series is the DC component, and is real-
valued	


• The DFT of a real series, ie: a physical series, results in a symmetric frequency 
spectrum series about the Nyquist frequency. 	


• Elements from n=0 … n = N/2 .. Correspond to “real frequencies”	


• fN/2 is the nyquist frequency	


• Elements from n=N/2+1 … n = N.. Are mathematical artifacts	


Correspond to non-physical “negative frequencies” … necessary for inverse 
transform to give a real-values result	
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Discrete Fourier Transform (8)	

• DFT Notes	

• The spectrum points corresponding to negative frequency are the complex conjugate of 

the positive frequency spectrum values.	


• The highest positive (or negative) frequency sample is called the Nyquist frequency. 
Highest frequency component that should exist in the input series for the DFT to 
yield "uncorrupted" results. 	


• More specifically if there are no frequencies above Nyquist the original signal can be 
exactly reconstructed from the samples.	


• The minimum frequency that can be resolved in a DFT spectrum is equal to One over 
the sample record length	


  
Yn = YN −n( )* → n ≤ N

2
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Discrete Fourier Transform (9)	


• Negative Frequencies get … folded to upper half of spectrum	


Natural frequencies	
Negative frequencies	


Folded frequencies	


y(k ⋅ t)= Yn ⋅e
− j⋅ 2πN ⋅n⋅k

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n=0

N /2

∑ + Y *
N−n ⋅e

− j⋅ 2πN ⋅n⋅k
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n=N
2
+1

N−1

∑
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Discrete Fourier Transform Labview VI	

• X is a real valued input vector function	

• FFT(x) is a complex valued output vector	


Ynlabview =
N
2
⋅ An − j ⋅Bn( )

Labview VI does 	

not divide by N	


Proper  Definition :

Yn =
1
N

yke
− j 2π

N
⋅n⋅k

⎡
⎣⎢

⎤
⎦⎥

k=0

N

∑
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Discrete Fourier Transform Labview VI (2)	


• “Upper” half of	

Spectrum is complex	

Conjugate of 	

“Lower” half …	

With reversed order!	


Y fi( ) → ..... fi = i ⋅ Δf =
i
T
=

i
NΔt

, i = N
2
+1, N

2
+2,  ....... N

⎧
⎨
⎩

⎫
⎬
⎭
=

Y *
fi( ) → ..... fi =

i
NΔt

, i = N
2
−1,  N

2
−2,  ...,  2,  1,  0

⎧
⎨
⎩

⎫
⎬
⎭
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• FFT(x) is a complex valued input vector	

• X is a real valued output vector	


Yk =
N
2
⋅ Ak − j ⋅Bk( )

xn = x(n ⋅ Δt)
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Inverse Discrete Fourier Transform Labview VI (2) 	
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• FFT(x) is a complex valued input vector	

• X is a real valued output vector	
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Fast Fourier Transform (6)	

• The Discrete Fourier Transform (DFT) is used to 	

produce frequency analysis of discrete non-periodic signals.	


• The FFT is another method of achieving the same result, BUT	

 it is incredibly more efficient, often reducing the computation 	

time by hundreds .. same improvement as flying in a jet aircraft versus 
walking! 	


• If the FFT were not available, many of the techniques 	

described in this class would not be practical. 	


An FFT computation takes approximately N*log2(N) operations, 	

whereas a DFT computation takes approximately N*N operations, 	

so the FFT is significantly faster.	


Speed ratio = N/log(N) …> 4096 pts --> 492 times faster 	
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Fast Fourier Transform (2)	

• While the FFT only requires a few dozen lines of code, it is 	

one of the most complicated algorithms in DIGITAL 	

SIGNAL PROCESSING.  (DSP)	


• FFT operates by decomposing an N point time domain signal 	

into N time domain signals each composed 	

of a single point. 	


• SECOND step is to calculate the N frequency spectra 	

corresponding to these N time domain signals. 	


• Finally, the N spectra are synthesized into a single 	

frequency spectrum. 
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Fast Fourier Transform (3)	


• ref: http://www.dspguide.com/ch12/2.htm	
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Fast Fourier Transform (4)	

• Most common FFT algorithm required that sample length	

Be a power number of two data points	


N=2i,      ……. i=2,3,4, …. 	


• You will NOT be required to develop an FFT algorithm	

in the class … Labview has a whole suite of FFT-Based signal 
processing codes	
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Signal Processing Using DFT	

• We can “mechanize” the response of a system to an arbitrary	

Input using the Forward and Inverse Discrete Fourier transform	


• But be 	

sure to build 	

upper half 	

of spectrum	


included “upper half”	

Of spectrum	


• DFT scaling … 	
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DFT Applications … Noise Canceling 
headsets 

•	  Essentially, this involves using a "
microphone, placed near the ear, "
and electronic circuitry which "
generates an "antinoise" sound wave "
with the opposite polarity of the sound "
wave arriving at the microphone. "
This results in destructive interference, "
which cancels out the noise within the "
enclosed volume of the headphone"
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“Simple” Noise Canceling Logic Written in 
Labview 


