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Sample Mean and Standard Deviation(1)
µ is the true mean of the distribution, or the actual value without

any error.  If we take a sample and average the results, we obtain

the most probable value of the mean: sample mean
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x
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Define the deviation to be the the sample mean and any value

di = xi - µ

The mean squared deviation can be approximated by averaging the

squared deviation of the sample: (sample standard deviation)
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Sample Mean and Standard Deviation(2)
For the Sample standard deviation … n-1 is the degrees of freedom

(number of samples minus what we calculate from them) …. Since

the sample mean is already computed from the samples, the degrees

of freedom are reduced by 1

• If the samples within the population are independent of each other

(as in Gaussian population) … then 
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Estimation of Uncertainty (1):
Sample Statistics

• Based on 

Measurements of

 a hand full of 

Marbles what can

We conclude

About the 

Diameters

Of the marbles 

in the bag?
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Estimation of Uncertainty (2)
Sample Statistics

• In real life we deal with samples of a population and NOT the entire 

population itself … thus we must use averages From the sample to infer 

the properties of the population

• As the sample population 

gets very large … not a 

problem … But for smaller 

samples … its a bit trickier

Big! Sample

Small! Sample

• Which sample would you 

Expect provides the

best information about

the population of 

marbles in the bag?
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Introduction to Uncertainty Analysis

• The overall uncertainty of a measurement will be a

combination of the bias uncertainty and the precision

• If we can account for the bias we take it out … otherwise bias

is modeled as an uncertainly

• The overall uncertainty is the Root-sum-square (RSS) of the

Bias and random uncertainty + other classifiable errors like

hysterysis, calibration, etc.

     Ux = (Bx
2 + Rx

2 + Oe2)1/2
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Probabilistic Description of Error (1)

• If an error is purely random … then it will tend to give a different

Value each time … and the occurrence of a given value is

Just as likely as the occurrence of another value

• Flipping a coin is a good example … 50% probability of

Heads, 50% probability of tails 
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Probabilistic Description of Error (2)

• What is the probability that a coin 4 times in a row and having

Them all be heads?  … look at sample space … 

(H,H,H,H), (H,H,H,T), (H,H,T,H), (H,H,T,T), (H,T,H,H), 

(H,T,H,T),  (H,T,T,H), (H,T,T,T),  (T,H,H,H), (T,H,H,T), 

(T,H,T,H), (T,H,T,T), (T,T,H,H), (T,T,H,T), (T,T,T,H), 

(T,T,T,T)

P(H,H,H,H)=N(H,H,H,H)/Npossible =1/16

• As a shortcut, we could say that the probability of 

getting heads on any one throw is 1/2. The probability of 

getting four heads in a row therefore is 

(1/2)(1/2)(1/2)(1/2) =  or (1/2)4 = 1/16.
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Probabilistic Description of Error (3)

• Example of Non-uniform probability distribution

• How many ways to get

Seven?

{1,6},{2,5},{3,4}

{6,1},{5,2},{4,3}

How about four?

{1,3},{2,2},{3,1}

… so seven is twice

As likely as 4!
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Probabilistic Description of Error (4)

• “7” is Most likely

• “2” is least likely
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Probabilistic Description of Error (5)

• For three or more die rolls, the curve becomes more bell-shaped 

with each additional die added to system … central limit theorem

• The “Bell-shaped” curve is referred to as the Normal or

Gaussian distribution

• The Gaussian distribution describes the population of possible

Outcomes when a large number of independent sources contribute

To the final outcome

• It is typically used for a probabilities description of 

uncorrelated errors … empirical result based on observation
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Central Limit Theorem
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Gaussian Probability Density Function

p(x) =
1

2! "#
e
$
x$µ( )2

2#
2

•µ --> “mean” most likely value

•!  --> “standard deviation” …

Describes likelihood of  deviation 

from the mean --> !2 = “variance”
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Probability Density versus Distribution (1)

Density Distribution

P
x( ) =

1

2! "#
e
$
x$µ( )2

2# 2
%

&
''

(

)
**

$+

x

, dx
p(x) =

1

2! "#
e
$
x$µ( )2

2#
2
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Probability Density versus Distribution (2)
• Probability of an occurrence with in a given range is the integral

Of the density function over that range

P
x!x1&x"x2( ) =

1

2# $%
e
&
x&µ( )2

2% 2
'

(
))

*

+
,,

x1

x2

- dx

• Integral cannot

Be analytically

evaluated

• Numerical 

Calculation

Is  used



16MAE 3340 INSTRUMENTATION SYSTEMS

Tabulation of Normal Data

z =(x - µ)/ ! p z( ) =
1

! 2"
e
# z

2
/2

“not very

convenient”



17MAE 3340 INSTRUMENTATION SYSTEMS

Labview Code
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Probabilities of Deviation (1)

1-! "one-sigma"

z
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Probabilities of Deviation (2)

2-! ”two-sigma"

z
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Probabilities of Deviation (3)

3-! ”three-sigma"

z
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Probabilities of Deviation (4)
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Example 3.6.1 (pp. 52-53 B.M.L)

• # of Pressure readings

Taken that line within 

+ 0.005 Mpa of listed value

• Histogram of Data

(number of occurrences 

Within each bin)

• Compared with Normal

Distribution based on sampled

Mean and standard deviation
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Example 3.6.1 (2)

• Sample mean and 

standard deviation

Sx =

xi ! x
_"

#
$
%

2

n !1i=1

n

& = 0.014Mpa

x =
x
i

ni=1

n

! = 4.008Mpa
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Example 3.6.1 (3)

Sx =

xi ! x
_"

#
$
%

2

n !1i=1

n

& = 0.014Mpax =
x
i

ni=1

n

! = 4.008Mpa

• Sample

“Not quite”

Gaussian

• How much

“not quite”?
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Confidence Intervals for Finite Samples

  

x =
1

n
x

i

i=1

n

!

  

S
x

=
1

n !1
x

i
! x [ ]

2

i=1

n

" =

x
i

2

i=1

n

"
# 

$ 
% 

& 

' 
( ! nx 

2

n !1

Estimate of 

the mean
Estimate of the

Standard Deviation

Based on a finite sample, we would like to:

1) Estimate the mean and standard deviation, and their

uncertainty

2) Infer the probability distribution of the data
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Confidence Intervals (1)
• For a Gaussian distributed population … the sum of any selected sample is

also Gaussian distributed … consequently … the sample mean (for n points)

… is a Gaussian distributed variable

     with a standard deviation given by

  

x =
1

n
x

i
! µ

i=1

n

"

Of course if we take another equally large, but different random sample from

The population … we will get another equally valid estimate of the mean

…Which estimate is “more correct”

… more data you use … the better your estimate

!
2

x

_ =
! (x)( )

2

n

z =
x
_

! µ

"
x

_

=
x
_

! µ

" / n

In terms of

Normalized value

!
2

x

_ =
! (x)( )

2

n

  

x =
1

n
x

i
! µ

i=1

n

"• Our estimate of the mean 

is a Gaussian distributed variable with

Variance … 
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Confidence Intervals (2)

  

x =
1

n
x

i
! µ

i=1

n

"

We’d like to be able to say how sure we are of this estimate.  Let’s look at the

probability that our estimate of the mean is within some bound.  We can say that

there is a c% chance that our estimate of the mean lies within

µ ± z
c /2

!

n
" µ # z

c /2
$
!

n
< x < µ + z

c /2
$
!

n

%

&
'

(

)
*

z =
x
_

! µ

" / n
# x

_

= µ ± z $
"

n

• Or Alternatively

  

x ! z
c / 2

"

n
< µ < x + z

c / 2

"

n
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Confidence Intervals (3)

  

x =
1

n
x

i
! µ

i=1

n

"

The larger we make the confidence interval c …. the larger zc/2 becomes  … and

the larger the range  for the mean estimate

  

x ! z
c / 2

"

n
< µ < x + z

c / 2

"

n

c/2zc/2
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Confidence Intervals (4)

This means that we are c% confident that the true mean µ lies

within the interval about our measurement:

  

x ! z
c / 2

"

n
< µ < x + z

c / 2

"

n

The only trouble is that we don’t know the value of ! either.  If n is

large enough, we can use our estimate Sx, so

  

x ! z
c / 2

S
x

n
< µ < x + z

c / 2

S
x

n

Standard Error of the Sample Mean

  

S
x 

=
S

x

n
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Confidence Intervals (5)

  

x =
1

n
x

i
! µ

i=1

n

"

Same effect using computer code … i.e .. For 95% confidence level … c/2 = 0.475

x ! z
c /2

S
x

n
< µ < x + z

c /2

S
x

n

0.4750 - area Under

curve between lines

z = 0

z  = 1.96 = zc/2

x !1.96
S
x

n
< µ < x +1.96

S
x

n
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Confidence Interval for Example 3.6.1(1)

Sx =

xi ! x
_"

#
$
%

2

n !1i=1

n

& = 0.014Mpa

x =
x
i

ni=1

n

! = 4.008Mpa

What is 99%

confidence level

for this sample

mean?
• Can use table 3.2 with c = 49.5%

Which is kinda Kludgy  
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Confidence Interval for Example 3.6.1(2)

What is 99%

confidence level

for this sample

mean?

• Or use your numerical program 99% confidence level

c/2 = 0.495

zc/2=2.575
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Confidence Interval for Example 3.6.1(3)

What is 99%

confidence level

for this sample

mean?

• or more directly use two sided probability

99% confidence level

--> c = 0.99

Z0.99=2.575
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Confidence Interval for Example 3.6.1(3)

99% confidence level zc/2=2.575

x ! z
c /2

S
x

n
< µ < x + z

c /2

S
x

n
"

4.008 ! 2.575
0.014

100
< µ < 4.008 + 2.575

0.014

100
"

4.004395 < µ < 4.01165" µ = 4.008 ± 0.003605
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Confidence Interval for Example 3.6.1(4)
Or Using the tables

c = 0.99, c/2 = 0.495 …

z0.495 = 2.575

µ = 4.008 ± 2.575 (0.014)/10 = 4.008 ± 0.003605  (99%)

  

µ ± z
c / 2

!

n

Easier to mechanize using 

Computer .. And less error
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Confidence Intervals for Small Samples

We do not always have the luxury of taking large samples (n > 30).  For smaller

sample sizes, we cannot assume that ! ~ Sx. If we derive the distribution of the

quantity

assuming that the population is gaussian,we get the Student t-distribution

  

t =
x ! µ

S
x
/ n

The derivation of the t-distribution 

was first published in 1908 by 

William Sealy Gosset, while he 

worked at a Guinness brewery in 

Dublin. He was not allowed to publish 

under his own name, so the paper 

was written under the pseudonym Student.

• Dependent upon the number of

Degrees of freedom,  v=n-1
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Student’s-t distribution (1)

• Given a sample set …

• The variable

x
1
, x

2
, x

3
,...xn{ }!

mean :µ

var iance :" 2

#

$
%

&

'
(! sample mean : x =

xi

ni=1

n

)

z =
x
_

! µ

"
x

_

=
x
_

! µ

" / n

is normally distributed with mean 0 and variance 1

• The Student's t-distribution is a probability distribution that arises in the

problem of estimating the mean of a normally distributed population when the

sample size is small. It is the basis of the popular Student's t-tests for the

statistical significance of the difference between two sample means, and for

confidence intervals for the difference between two population means.
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Student’s-t distribution (2)

• Gosset studied a related quantity, for small samples

And showed that it had the probability density function

  

t =
x ! µ

S
x
/ n

“t” distribution

p(t) =

!
" +1

2

#
$%

&
'(

")!
"
2

#
$%

&
'(

1+
t

2

"
*
+,
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./
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0
" = n 11

! = "gamma function"
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$
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&

'
(

!(x) = u
x11

e
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3 4
e
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+
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/
/i=1

2

5



39MAE 3340 INSTRUMENTATION SYSTEMS

Student’s-t distribution (3)

• The Student's t-distribution is a probability distribution that arises in the

problem of estimating the mean of a normally distributed population when the

sample size is small. It is the basis of the popular Student's t-tests for the

statistical significance of the difference between two sample means, and for

confidence intervals for the difference between two population means.

Density 

function

Probability

function



x ! tc /2,v "
Sx
n
# µx # x + tc /2,v "

Sx
n



t 0.475,  7{ } = 2.2364
t 0.475,  7{ } =

2.2364
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Small-Sample Confidence Interval(3)
• compare to “large population” Gaussian " =infinity

For 95% confidence level

x ! 2.2364
S
x

n
< µ < x + 2.2364

S
x

n

“lots” of data points

(" --> infinity)
x !1.96

S
x

n
< µ < x +1.96

S
x

n

“uncertainty is obviously larger for small sample”

8 of data points

(" --> 7)
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Small-Sample Confidence Interval(4)
• Example 3.6 in B.M.L.

Postal scale calibration …. 14 one-ounce weights chosen & weighed

Value "x   #x #x2 "#x2 Sample Statistics
1.080   1.080  0.071 0.005 0.005

1.030      2.110  0.021 0.000 0.005

0.960   3.070 -0.049 0.002 0.008 x =1.00929
0.950   4.020 -0.059 0.003 0.011

1.040   5.060   0.031 0.001 0.012

1.010   6.070   0.001 0.000 0.012 Sx =0.04178
0.980   7.050 -0.029 0.001 0.013

0.990   8.040 -0.019 0.000 0.014

1.050   9.090   0.041 0.002 0.015

1.080 10.170   0.071 0.005 0.020

0.970 11.140 -0.039 0.002 0.022

1.000 12.140 -0.009 0.000 0.022

0.980 13.120 -0.029 0.001 0.023

1.010 14.130   0.001 0.000 0.023

• Compute

95% confidence

interval (precision)

for population

mean

Stephen Whitmore


Stephen Whitmore


Stephen Whitmore
2

Stephen Whitmore


Stephen Whitmore




2                        . 

t 0.475,  13{ } =

2.160



2                        . 

Precision ! t 0.475,  13{ } "
Sx
n
= 2.160 " 0.04178

14
= 0.02412



x
/3 = µ = 4.008 ± 0.01202 (99%)

Small Sample Confidence Intervals (7)         

!"

Plotted Data from Table 4.4 for Student’s t Distribution (Figliola and Beasley) 



x
/3 = µ = 4.008 ± 0.01202 (99%)

Small Sample Confidence Intervals (8)         

!"

Re-Plotted Data from Table 4.4 for Student’s t Distribution (Figliola and Beasley) 



50MAE 3340 INSTRUMENTATION SYSTEMS

The t-Test Comparison (1)

If we take two small samples, and we wish to determine whether or not the

resultant means are statistically identical, we use this test.

  

t =
x ! µ

S
x
/ n

  

t =
x 
1
! x 

2

S
1

2
/n
1( ) + S

2

2
/n

2( )

We find t by choosing a confidence interval.  In order to do that, we need to

know the number of degrees of freedom.  In general, the number of samples

in 1 and 2 may be different.  The effective degrees of freedom can be

approximated by:

  

! =
S
1

2
/n
1( ) + S

2

2
/n

2( )[ ]
2

S
1

2
/n
1( )
2

n
1
"1

+
S
2

2
/n

2( )
2

n
2
"1

to the nearest integer.  If the computed value of t lies inside of the interval ±t!/2,"
, then the two means are statistically identical within the confidence assumed.
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The t-Test Comparison (2)

• Want to determine lifetimes of two different Brands of light bulbs

Lifetime, months

Brand A Brand B
7.2 7.5

7.6 8.7

6.9 7.7

8.2 7.5

7.3 6.7

7.8 11.2

6.6 7.0

6.9 10.7

5.5 7.0

7.4 8.6

5.7 6.1

6.2 6.3

7.8

8.7

6.1

   Lifetime Statistics , months

Brand A Brand B

x=6.94 x=7.84

Sx=0.82 Sx=1.53

n=12 n=15

! =
S
1

2
/ n

1( ) + S
2

2
/ n

2( )"
#

$
%
2

S
1

2
/ n

1( )
2

n
1
&1

+
S
2

2
/ n

2( )
2

n
2
&1

=

0.82
2

12

1.53
2

15

+
! "
# $
% & 2

0.82
2

12! "
# $
% & 2

12 1'

1.53
2

15! "
# $
% & 2

15 1'
+

! "
# $
# $
# $
# $
% &

= 22.213 .. Round to 22

• At 95% confidence level

Is there any statistical difference?
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The t-Test Comparison (3)

   Lifetime Statistics , months

Brand A Brand B

x=6.94 x=7.84

Sx=0.82 Sx=1.53

n=12 n=15
$effective ~ 22

For 95% --> c/2=0.475 

zc/2=0.475,"=22 = 2.074

• Look at test statistic

t =
x
1
! x

2

S
1

2
/ n

1( ) + S
2

2
/ n

2( )
=

6.94 7.84!

0.82
2

12

1.53
2

15
+

" #
$ %
& ' 0.5

" #
$ %
$ %
$ %
$ %
& '

= 1.954 < 2.074

At 95% level no

Statistical significance
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Bias and Single Sample

 Uncertainty

What can you do about estimating the your precision uncertainty

if you only take 1 or 2 samples?

You can use the instruments specs (non repeatability) to estimate

the uncertainty and treat it like it is a bias error.

Better approach is to “take more samples”
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%2  Distribution (1)
• As we saw earlier … For a Gaussian distributed population 

… the sum of any selected sample is also Gaussian distributed 

… consequently … the sample mean (for n points) … is a Gaussian 

… distributed variable

• However the sum of the squares of any set of points is NOT

Gaussian distributed  ..  The distribution is instead described

By a #2 distribution for " = n-1 degrees of freedom.

• Consequently, the

Sample variance is

A random variable

Distributed as #2. 

S
x

2
=

x
i
! x

_"
#

$
%

2

n !1i=1

n

&

p!2 (x) =

1

2

"
#$

%
&'

(
2

)
(
2

"
#$

%
&'

x

(
2
*1"

#$
%
&'
e
*
x

2
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%2  Distribution (2)

• One-sided density function … because of “squared” components

• For a Gaussian Distributed population with µ=0, !2=1

Cumulative

Distribution

function

S
x

2
=

x
i
! x

_"
#

$
%

2

n !1i=1

n

&

p!2 (x) =

1

2

"
#$

%
&'

(
2

)
(
2

"
#$

%
&'

x

(
2
*1"

#$
%
&'
e
*
x

2
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%2  Distribution (3)

• Tables of #2 probability

P!2 (",#) =

1

2

$
%&

'
()

#
2

*
#
2

$
%&

'
()

a

#
2
+1$

%&
'
()
e
+
a

2

"

,

- da



56MAE 3340 INSTRUMENTATION SYSTEMS

%2  Significance Testing (1)

• Recall that the Gauss/Student’s-t distributions allow us to

Assess the precision of an estimate of the population

Mean

1) large sample .. Gaussian distribution

2) small sample … Student’s t distribution

  

x =
1

n
x

i

i=1

n

! !
2

x

_ =
! (x)( )

2

n

• The #2 distribution allows up to perform the same evaluation

For the sample variance (square of the standard deviation)

S
x

2
=

1

n !1
x
i
! x[ ]

2

i=1

n

" =

x
i

2

i=1

n

"#$%
&
'(
! nx 2

n !1
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%2  Significance testing (2)
n !1( )S

x

2

"# /2

2
< $ 2

<
n !1( )S

x

2

"
1!# /2

2
.....(c%)

• Example 1 … 8 data points … "=7, 95% confidence level

c% = 1 - $

• & = 1-0.95 = 0.05-->                            &/2     = 0.025

                            1- &/2  = 0.975

%2 (1-&/2) = 1.689

%2 (&/2) = 16

7S
x

2

16
< !

2
<
7S

x

2

1.689
.....(95%)
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#0.975
2
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Check ! Log-Log Plot  
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%2  Significance testing (3)
n !1( )S

x

2

"# /2

2
< $ 2

<
n !1( )S

x

2

"
1!# /2

2
.....(c%)

• Example 2 … 51 data points … "=50, 95% confidence level

c% = 1 - $

• & = 1-0.95 = 0.05-->                            &/2     = 0.025

                            1- &/2  = 0.975

%2 (1-&/2) = 32.33

%2 (&/2) = 70.75

50S
x

2

70.75
< !

2
<
50S

x

2

32.33
.....(95%)
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%2  Significance testing (4)
n !1( )S

x

2

"# /2

2
< $ 2

<
n !1( )S

x

2

"
1!# /2

2
.....(c%)

• Example 2..  251 data points … "=250, 95% confidence level

c% = 1 - $

• & = 1-0.95 = 0.05-->                            &/2     = 0.025

                            1- &/2  = 0.975

%2 (1-&/2) = 207.35

%2 (&/2) = 276.2

250S
x

2

276.2
< !

2
<
250S

x

2

207.25
.....(95%)
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Other uses for %2 distribution

We can use Chi-squared to estimate our confidence in our estimate of the

standard deviation Sx.  However, there is seldom much call for this.  A more

useful application of Chi-squared is to check our assumption that the data we are

dealing with fits a certain distribution.  We are going to assuming in this class

that our data fits a normal (gaussian) distribution.  If we have a set of data and

we want to make sure this is a good fit, we use this test.
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See example 4.7, Pages 138-139 in your text book 
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!2 Goodness of Fit Test on Experimental Set 

! 2
goodness
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!2 Goodness of Fit Test on Experimental Set (2) 

nj ! histogram results at center of  bins ... {1, .... Nbins }

n
j

' ! gauss p(x) calculated at  center  bins value 
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nj ! histogram results 
at center of  bins ... {1, .... Nbins }
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' ! gauss p(x) calculated 

at  center  bins value 



! 2
goodness
of  fit

=
nj " nj

'( )2

nj
,

#

$

%
%

&

'

(
(

j=1

Nbins

)

= 16.1947 
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!2 Goodness of Fit Test on Experimental Set (3) 
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!2 Goodness of Fit Test on Experimental Set (4) 
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!2 Goodness of Fit Test on Experimental Set (5) 

Stephen Whitmore
Uniformly Distributed
Sequence Example
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!2 Goodness of Fit Test on Experimental Set (6) 

Uniformly Distributed Sequence 
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!2 Goodness of Fit Test on Experimental Set (6) 

Uniformly Distributed Sequence 


