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Section 6.2 : Heat Transfer and Heat Flux
Measurements
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Temperature Versus Heat (1)

 Often the concepts of heat and temperature are thought
to be the same, but they are not.

e Temperature 1s a number that is related to the average
kinetic energy of the molecules of a substance. If temperature
is measured in Kelvin degrees, then this number is directly
proportional to the average kinetic energy of the molecules.

» Heat 1s a measurement of the total energy in a substance.
That total energy 1s made up of not only of the kinetic
energies of the molecules of the substance, but total energy
is also made up of the potential energies of the molecules.
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Temperature Versus Heat (2)

* When heat, (1. e., energy), goes into a substance one of two things
can happen:

1. The substance can experience a raise in temperature. That is, the heat can be
used to speed up the molecules of the substance.

2. The substance can change state. For example, if the substance is ice, it can
melt into water. This change does not cause a raise in temperature. The
moment before melting the average kinetic energy of the ice molecules is
the same as the average kinetic energy of the water molecules a moment
after melting. Although heat is absorbed by this change of state, the

absorbed energy is not used to speed up the molecules. The energy is used
to change the bonding between the molecules.
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Temperature Versus Heat (3)

» Relationship between temperature and heat transfer

.... Heat flows from “cold to hot™
m —> mass of object_,,

c, —> specific heat of object

ol Jdqg k'K
. = —_— .
mec dr  dt T — temperature of object .
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m:-c D —> “heat capacity” ~ J/°K
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Temperature Versus Heat (4)
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If more heat goes in than goes out ...
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Measurement of Heat Flux

We seek to measure

e Slug type

e Foil/Membrane type

e Thin Film Layers type
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Heat Flux Measurement: Slug Type
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Heat Flux Measurement: Membrane Type

Thermocouple Constantan  Copper
junctions membrane heat sink
/ tk
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=Ceemf
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thermocouple leads
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Heat Flux Measurement: Thin-Film Layered
Type
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Bottom line: create a 1-D heat flow and measure temperature at
two known locations.
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Temperature Element Response (1)

We’ve already covered the first part of this in this class (step response to first
order systems) and in heat transfer. Since it is so much fun, let’s do it again. Say
you have a thermocouple that is essentially a sphere with two non-conducting
wires protruding from it. You place it in a fluid warmer than the junction. Then
the first law says that E, - E_,, = E ..q- NO heat comes in, since the bead is
cooler than the fluid.

store

dTl
probe
p dt = hAsurf (Tﬂuid - T

dT

1
probe
d { + ; Tprobe

mc

mc probe

hA

surf

= ;Tﬂuid —|T=

h -->heat transfer coefficient Step response essentially first order
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Temperature Element Response (2)

P=P +|P, -Ple'"
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t/r, Ratio of time to time constant

L ope =1y = (Tﬂuid -1 )(1 B e_m)
Tprobe = (To — Tﬂuid )e_m + Tﬂuid -1, + 1,
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In practice
Heat transfer coefficient, 4 1s not always known or easy to
compute. TC’s are generally calibrated for time response

For chrome—alumel 16-gage (0.051 in.) loop junction
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Two Time Constant Model (1)

Many (most) times, our temperature sensor 1s encased 1in some
other material. As a result, the first order response model may not

fit well. It is relatively simple to make a richer model that can
capture this effect.

-« Jacket % -L Jacket temperature = 7,

L—- Probe 4»‘4 Probe temperature = 7;,

id'

¢t <0, all temperatures equal At t = 0, temperature of surrounding
temperatures of the medium = T,

surrounding medium = T,
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Two Time Constant Model (2)

ad hA(T,-T)-h,A,(T,-T,)

Mgy TR T TSN T ) First law on the jacket
dT :

myc, dt” =h,A,(T,-T,) First law on the probe

Rewrite these: : : L
© This term 1is often insignificant. If

dT, n A S0, we can combine the two

TJ'Z_(TZ_];)_ hiA}; (T,-—Tp) equations.
dT,
=\T -T
" ( ’ ") d°’T, dr,
T,T, e +(‘Uj+rp)7+Tp=T2

Second Order Response Equation
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wo-time constant problem: Plot of AT/AT,,,. versus
t/t, for various ratios of £ = 7;/7,
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Compensating Slow Sensors

Figure 16.33 Curves illustrating compensating action of a simple RC
network (Courtesy: Instrument Society of America)
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Radiative Temperature Measurements
(Pyrometry)

Temperatures greater than 500°C
E, = oT* (Tamey 0=5.67010% W/mK*
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* Emitted Radiant Energy (magnitude)
-- as object heats up, 1t radiates energy
back into space

E
A

emitted energy

per unit area
(all wavelengths)

—co T?

O -- Stefan-Bolzman constant

€ -- emissitivity < 1
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Two Broad Categories

Some radiative temperature measurements are made by
detecting photons emitted by the hot source. We’ll call
these Photon Detectors. There 1s essentially no difference
between this and a CCD camera.

A Thermal Detector produces a rise in temperature at some
detector
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Thermal Cameras
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Radiative Temperature Measurements (1)
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Radiative Temperature Measurements (2)

The text’s discussion of radiative heat transfer is somewhat “dumbed down.”
Since most of you are currently Heat Transfer students, I will put this
discussion at a more appropriate level. Radiative heat is transferred via
photons which travel at the speed of light. When this energy strikes a
surface, it can either be absorbed, reflected, or transmitted.

6 is the Stefan-Bolzman constant (5.6704 x 10” ~ J/°K*-m*-sec), {¢, o} are the
emmissivity and absorbtivity of the surface

For a non-ideal radiator, &+ P+ 7 =1

E = oeT”

The radiative heat transfer between two ideal bodies A and B
g=eo(T} -T;)
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Radiative Temperature Measurements (3)

The text’s discussion of radiative heat transfer is somewhat “dumbed down.”
Since most of you are currently Heat Transfer students, I will put this
discussion at a more appropriate level. Radiative heat is transferred via
photons which travel at the speed of light. When this energy strikes a
surface, it can either be absorbed, reflected, or transmitted.

6 is the Stefan-Bolzman constant (5.6704 x 10” ~ J/°K*-m*-sec), {¢, o} are the
emmissivity and absorbtivity of the surface

For a non-ideal radiator, &+ P+ 7 =1

E = oeT”

The radiative heat transfer between two bodies A and B
g=eo(T} -T;)
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Radiative Temperature Measurements (4)

If A 1s not 1deal,

q = SAFBAG(T; - TB4)

In our case, the detecting element will be B, and from this we will
determine the heat flux (and thus the temperature) of A.

Calibration is required to account for unknown quantities like the
view factor and the body emissivity.
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Radiative Temperature Measurements (35)

The hotter the object, the more EM
Radiation it emits at shorter wave-
Lengths.
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Radiative Temperature Measurements (6)

As the body increases in temperature, its emissive power
increases, and the peak of the spectrum shifts to higher
frequencies (lower wavelengths)

8 | l
: |
l | ) E. = Cl
& I R A 5( C,/AT
o1 ] )»(e . —1)
R
5 |5
= I I —
Bz :
5 | %, 2000°R (1093 K)
3 ;>i
i 1500°R (816 K)
o+
c | 1000°R (538 K)
}
|
0 :

=% 1 6 8 10 12

Wavelength A, micrometers

MAE 3340 INSTRUMENTATION SYSTEMS 26




UtahState INtechanicSlladhenospace)
U NIVER S ITY Engineering

Wien’s Displacement Law udiant frequency)

kmax = Wavelength of maximum energy output, (um)
2898 _
max —
T T = Object temperature, deg Kelvin

Ainax = 22028 =0.483 um

6000 °K | sun
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Total Radiation Pyrometry
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Optical Pyrometry

One or two wavelengths of light are selected using a series of
optical filters. For a photon detector, we can determine the
temperature from

E, G

- )LS(eCZ/)»T _1)

If two colors (wavelengths) are examined, the influence of the
unknown emissivity of the object, which may be independent
of wavelength, can be eliminated.
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