

MAE 5420 - Compressible Fluid Flow

v) Sonic Velocity in a gas

2

Review

Subsonic - All flow everywhere on the aircraft less than local speed of sound.

$$\sin(\mu) = \frac{1}{N}$$

i) High Speed flows often seem "counter-intuitive" when Compared with low speed flows

Transonic - Some flow is subsonic and some is supersonic.

Supersonic - All flow everywhere on the aircraft is supersonic.

Hypersonic - Fluid flows that are Much Higher than sonic velocity

• Key Concepts:

ii) Flow regimes

Medientel & Ferospers Engineering

MAE 5420 - Compressible Fluid Flow

$p V = n R_{II} T$ • p - pressure acting on gas

- *V* volume of gas in system
- Number of moles of gas in system • n -
- R_u Universal gas constant
- T -Temperature of gas

1-mole -->
$$6.02 \times 10^{23}$$

Avagadro's number

n

р

Equation of State for a Perfect Gas

- Relationship Between pressure, temperature, and density derived empirically in Modern form by John Dalton
- Theoretically derived by Ludwig Boltzmann using statistical Thermodynamics
- In perfect gas ... intermolecular (van der Waals) forces are neglected

John Dalton

UtahState

UNIVERS

Mechanizal & Flarospa

3

Medicinies & Flarospers Engineering

UNIVERSITY

Equation of State for a Perfect Gas (cont'd)

• Re organizing the equation of state

$$p = \frac{M}{V} \frac{\mathfrak{n}}{M} R_u T = \rho \frac{R_u}{M/\mathfrak{n}} T = \rho \frac{R_u}{M_w} T = \rho R_g T$$

- p pressure acting on gas
- *V* volume of gas in system
- *n* Number of moles of gas in system
- R_u Universal gas constant
- T Temperature of gas
- M_w Molecular weight of gas
- R_g Gas Specific Constant
- M Mass of gas contained in volume

 $p = \rho R_g T$

MAE 5420 - Compressible Fluid Flow

4

UNIVERSITY

5

Equation of State for a Perfect Gas (cont'd)

• Numerical Values for Universal Gas Constant

 $R_u = 1545.40$ ft-lbf/°R-(lbm-mole)

 $R_u = 49722.01$ ft-lbf/°R-(slug-mole)

 $R_u = 8314.4612 \text{ J/}^{\circ}\text{K-(kg-mole)}$

• Gas Specific constant is Universal constant divided by the average molecular weight of the gas

Mo	lecul	lar	of	various	gases

Hydrogen	2.0
Helium	4.0
Methane	16.0
Ammonia	17.0
Water (steam)	18.0
Neon	20.2
Nitrogen	28.0
Air	28.9
Oxygen	32.0
Argon	39.9
CO2	44.0

UtahState

Medicale Flarespece Engineering

Equation of State for a Perfect Gas (concluded)

• Molecular weight of Air

Average molecular weight of the gases in the atmosphere. Air on earth at sea level is a mixture of approximately 78% nitrogen, 21%oxygen, with the remaining one percent a mix of argon, carbon dioxide, neon, helium and other rare gases,

~ 28.96443 kg/kg-mole

• Numerical Values for Air Specific Gas Constant $R_g = 53.355$ ft-lbf/°R-(lbm) $R_g = 1716.658$ ft-lbf/°R-(slug) $R_g = 287.056$ J/°K-(kg)

Mechanical & Flaroupe UtahStat Specific Heats, Internal Energy, and Enthalpy (cont'd) • *e* is the internal energy per unit mass The total kinetic and potential energy associated with the motions and relative positions of the molecules a gas, solid, or liquid. An increase in internal energy results in a rise in temperature or a change in phase Symbols *"e" --> "u"* often **Used interchangeably** • h is the enthalpy per unit mass **An thermodynamics** The measure of the *heat content of a chemical or physical system*. texts **Change in energy** $h = e + p \cdot v$ Anderson uses "e" $\rightarrow dh = d(e + p \cdot v) = de + dp \cdot v + p \cdot dv$ I mostly will use "e" work But sometimes I will slip Up and use "u" mass h is the specific enthalpy, (SI - joules/kg) e is the specific internal energy, (SI - joules/kg)P is the pressure of the system, (SI - pascals) v is the specific volume, (SI cubic metres/kg) = $1 / \rho$ 7

Medicinites Crarospers Engineering

Specific Heats, Internal Energy, and Enthalpy

- Specific heat definitions:
 - Constant Volume:

$$C_{v} = \left(\frac{de}{dT}\right)_{v}$$

- Constant Pressure:

$$C_p = \left(\frac{dh}{dT}\right)_p$$

Universal relationship applies to all perfect gases -

$$C_{p} = \left(\frac{dh}{dt}\right)_{p} = \frac{d}{dT}(e+pv) = \frac{de}{dT} + \frac{d}{dT}\left(R_{g}T\right) = c_{v} + R_{g}$$

$$\checkmark C_p = C_v + R_g$$

UtahState UNIVERSITY First Law of Thermodynamics (continued)

- Recall from earlier

 Adiabatic Process... no heat loss or addition
 Reversible Process ... no dissipative phenomena occur
 Reversible adiabatic process is referred to as *isentropic*
- Reversible, non-adiabatic
- Reversible, Adiabatic (isentropic)

$$de = dq - p \cdot dv$$
$$dh = dq + v \cdot dp$$

$$de = -p \cdot dv$$
$$dh = v \cdot dp$$

$$v = \frac{1}{\rho}$$

$$C_{v} = \left(\frac{de}{dT}\right)_{v}$$

$$C_p = \left(\frac{dh}{dT}\right)_p$$

UtahState

Medienteel & Flarcepeee Engineering

Second Law of Thermodynamics (cont'd)

•Thermodynamic entropy, *s*, is a measure of the amount of energy in a physical system that cannot be used to do work.

• It is a relative measure of the disorder present in a system. (SI unit of entropy is J/°K)

$$Tds = dq + Tds_{irrev}$$

Do NOT! Confuse enthalpy and entropy

Reversible heat addition

Effect of dissipative processes

• Calculate change in entropy using first, second laws:

First Law:
$$de = dq - pdv - dw_{irrev}$$

Second Law: $Tds = dq + Tds_{irrev}$

UNIVERSITY

Medicination Considerations Engineering

Second Law of Thermodynamics (cont'd)

For a reversible process

$$de = dq - pdv$$

$$Tds = dq + pdv$$

Writing *e* in terms of enthalpy (h = e + p v)

dh = de + pdv + vdp and

Second Law:
$$Tds = de + pdv$$

First Law: $dh = de + pdv + vdp$
 $dh = Tds - pdv + pdv + vdp =$
 $dh = Tds + vdp$
 $dh = Tds + vdp$
 $dh = 12$

Medienteel & Flarospece Engineering

Second Law of Thermodynamics (cont'd)

Solving for *ds* and integrating between state 1 and state 2

$$ds = \frac{dh}{T} - \frac{vdp}{T} \longrightarrow S_2 - s_1 = \int_1^2 \left[\frac{dh}{T} - \frac{vdp}{T}\right]$$

But from earlier definition $C_p = \left(\frac{dh}{dT}\right)_p \longrightarrow S_2 - s_1 = \int_1^2 \left[\frac{c_p dT}{T} - \frac{vdp}{T}\right]$
From the equation of state $p = \rho R_g T = \frac{1}{v} R_g T$
 $v = \frac{R_g T}{p}$

MAE 5420 - Compressible Fluid Flow

UtahState

UNIVERSIT

UtahState UNIVERSITY

Madhanlæl & Flarospace Engineering

14

Second Law of Thermodynamics (concluded)

• Substituting equation of state into entropy integral

$$\boxed{v = \frac{R_g T}{p}} \qquad S_2 - S_1 = \int_1^2 \left[\frac{c_p dT}{T} - \frac{v dp}{T} \right] = \int_1^2 \left[\frac{c_p dT}{T} - \frac{\frac{R_g T}{p}}{T} dp \right] = S_2 - S_1 = \int_1^2 \left[\frac{c_p dT}{T} - R_g \frac{dp}{p} \right] \qquad \text{for thermally perfect gas} \\ \frac{\int_1^2 c_p \frac{dT}{T} = c_p \left[\ln(T_2) - \ln(T_1) \right] = c_p \ln\left(\frac{T_2}{T_1}\right)}{\left[\int_1^2 R_g \frac{dp}{p} = R_g \left[\ln(p_2) - \ln(p_1) \right] = R_g \ln\left(\frac{p_2}{p_1}\right) \right]} \\ \boxed{MAE 5420 - Compressible Fluid Flow}$$

UtahState UNIVERSITY

Medienteel & Flarospece Engineering

Second Law of Thermodynamics (concluded)

• Substituting into entropy integral

$$Valid for adiabatic
Process (\delta q=0)$$

$$Valid for adiabatic
Process (\delta q=0)$$

$$\begin{bmatrix} 1 & T_{1} \\ 1 & T_{2} \\ T_{1} \end{bmatrix} = c_{p} \ln\left(\frac{T_{2}}{T_{1}}\right)$$

$$\begin{bmatrix} 1 & T_{2} \\ 1 & T_{2} \end{bmatrix} = R_{g} \left[\ln\left(p_{2}\right) - \ln\left(p_{1}\right)\right] = R_{g} \ln\left(\frac{p_{2}}{p_{1}}\right)$$

$$s_{2} - s_{1} = \int_{1}^{2} \left[\frac{c_{p} dT}{T} - R_{g} \frac{dp}{p}\right]$$

$$s_{2} - s_{1} = c_{p} \ln\left(\frac{T_{2}}{T_{1}}\right) - R_{g} \ln\left(\frac{p_{2}}{p_{1}}\right)$$

Medienteel & Flarospece Engineering

Isentropic Process Relationships

UtahState

• For an isentropic process, (adiabatic, reversible) dq, $ds_{irrev} = 0$

$$ds = \frac{dq}{T} + ds_{irrev} = 0 - s_2 - s_1 = 0 = c_p \ln\left(\frac{T_2}{T_1}\right) - R_g \ln\left(\frac{p_2}{p_1}\right)$$

and
$$c_p \ln \left[\frac{T_2}{T_1}\right] - R_g \ln \left[\frac{p_2}{p_1}\right] \longrightarrow \left[\frac{T_2}{T_1}\right]^{c_p} = \left[\frac{p_2}{p_1}\right]^{R_g}$$

Solving for p_2 in terms of T_2
 $\frac{p_2}{p_1} = \left[\frac{T_2}{T_1}\right]^{\frac{c_p}{R_g}} = \left[\frac{T_2}{T_1}\right]^{\frac{c_p}{c_p - c_v}}$
MAE 5420 - Compressible Fluid Flow

$$16$$

Medicinical & Ferospece Engineering

More "later"

Isentropic Process Relationships (cont'd)

- Defining a ratio of specific heats, $\gamma = \frac{c_p}{c_v}$
 - $\frac{p_2}{p_1} = \left[\frac{T_2}{T_1}\right]^{\frac{1}{\gamma-1}}$
- Applying the equation of state

Medicinated & Flarospece Engineering

Isentropic Process Relationships (continued)

• Returning for the expression for sonic velocity

$$\mathbf{c} = \sqrt{\left[\frac{\partial \mathbf{p}}{\partial \rho}\right]_{\Delta s = 0}} - \triangleright \left[\frac{p_2}{p_1}\right] = \left[\frac{\rho_2}{\rho_1}\right]^{\gamma}$$

For isentropic process $(ds = 0)$
$$\frac{p_2}{p_1} = \left[\frac{\rho_2}{\rho_1}\right]^{\gamma} \rightarrow p_2 = \frac{p_1}{\rho_1^{\gamma}} \cdot \rho_2^{\gamma} \rightarrow \boxed{p = k \cdot \rho^{\gamma}}$$

$$\left(\frac{\delta p}{\delta \rho}\right)_s = \gamma k \rho^{\gamma - 1} = \gamma k \rho^{\gamma} \frac{1}{\rho} = \gamma p \frac{1}{\rho} = \gamma R_s T - \triangleright c = \sqrt{\gamma R_s T}$$

MAE 5420 - Compressible Fluid Flow

UtahState

UtahState UNIVERSITY

Medicinies & Flarospece Engineering

Isentropic Process Relationships (concluded)

• Returning for the expression for sonic velocity

$$\mathbf{c} = \sqrt{\left[\frac{\partial \mathbf{p}}{\partial \boldsymbol{\rho}}\right]_{\Delta \mathbf{s} = \mathbf{0}}} \quad - \triangleright \mathbf{c} = \sqrt{\gamma R_g T}$$

For isentropic process (ds = 0)

Definition for Mach number

$$M = V/C = \frac{V}{\sqrt{\gamma R_g T}}$$

Working expressions for Sonic velocity and Mach number!

UNIVERSITY

Thermodynamic properties of a mixed gas

• Molecular weight:

 $\bar{M}_{w} = \frac{\sum_{j} n_{j} (M_{w})_{j}}{\sum_{j} n_{j}} \rightarrow \qquad j --- \text{ constituent gases}$

ideal gas law
$$\rightarrow pV = nR_uT \rightarrow n = \frac{p}{R_uT}V$$

@constant temperature and pressure $\rightarrow n_i \approx V_i$

"Dalton's law"

 V_{frac_j}

$$\bar{M}_{w} = \frac{\sum_{j} V_{j} (M_{w})_{j}}{\sum_{j} V_{j}} = \sum_{j} \left(\frac{V_{j}}{\sum_{k} V_{k}} (M_{w})_{j} \right) = \sum_{j} \left(V_{frac_{j}} M_{w_{j}} \right)$$

UNIVERSITY

21

Thermodynamic properties of a mixed gas

(cond't)

• Example: air

$$\bar{M}_{w} = \sum_{j} \left(V_{frac_{j}} M_{w_{j}} \right)$$

Name	Symbol	Percent by Volume
Nitrogen	N ₂	78.084 %
Oxygen	0 ₂	20.9476 %
Argon	Ar	0.934 %
Carbon Dioxide	CO2	0.0314 %
Neon	Ne	0.001818 %
Methane	CH4	0.0002 %
Helium	He	0.000524 %
Krypton	Kr	0.000114 %
Hydrogen	H ₂	0.00005 %
Xenon	Xe	0.000087 %

$M_{w_{air}} =$

 $2 \cdot 14 \cdot 0.78084 + 2 \cdot 16 \cdot 0.209476 + 40 \cdot 0.00934 + (12 + 2 \cdot 16) 0.000314$

 $+ \dots = 28.96443 \text{ kg/kg-mole}$

$$--> R_{g} = \frac{8314.4612}{28.9644} = 287.056 \text{ J/}^{\circ}\text{K-(kg)}$$
MAE 5420 - Compressible Fluid Flow

UtahState UNIVERSITY

Thermodynamic properties of a mixed gas

• Specific heat

$$\bar{c_p'} = \frac{\sum_{j} n_j (c_p')_j}{\sum_{j} n_j} = \sum_{j} \left(V_{\text{frac}_j} (c_p')_j \right) \rightarrow c_p' = \text{Molar specific heat} \underset{(\frac{J}{\text{kg-mol}^\circ K})}{(\frac{J}{\text{kg-mol}^\circ K})}$$

$$\bar{c_p} = \frac{c_p'}{\bar{M}_w} = \frac{1}{\bar{M}_w} \sum_{j} \left(V_{frac_j} \left(c_p' \right)_j \right) \rightarrow mass \ specific \ heat_{(\frac{\mathbf{J}}{\lg^\circ K})}$$

$$c_{p_j} = \frac{c_{p'_j}}{M_w} \longrightarrow \bar{c_p} = \frac{1}{\bar{M}_w} \sum_j \left(V_{frac_j} M_{w_j} c_{p_j} \right)$$

Same holds for c_v

	tate SITY	Machanikaal & Flarcosperse Engineering
Т	hermodynamic	properties of a mixed gas
	·	(cond't)
• Speci	fic heat example air	
Gas	Molar Property	$c_{v_{air}} =$
<u></u>	$\dots c_{v}(J/kg-mol^{0}K)$	
Ar	12500	
He	$12500 \frac{2061}{2}$	$0 \cdot 0.78084 + 21700 \cdot 0.209476 + 12500 \cdot 0.00934 + 28200 \cdot 0.000314$
CO	20700	28.9541
H2	20400	
HC1	21400	+ = 717.64 J/kg- $^{\circ}$ K
N2	20610	
NO	20900	a = (P + a) =
O2	21700	$C_{p_{air}} - (\Lambda_g + C_v)_{air} -$
C12	24800	(287.056 + 717.64) $= 1004.696$
CO2	28200	V J/kg- K J/kg- K
N2O	28500	
Data at 15	° C and 1 atmosphere.	$\gamma = c_p / c_v = 1007.696 / 717.64 = 1.400$
MAE 5420 - (Compressible Fluid Flow	23

Ratio of Specific Heats

• γ varies as a function of temperature and drops off significantly at higher temperatures (*molecular spin mode*)

 γ effects become significant for hypersonic flow

• For *a lot* of this class...we will use $\gamma = 1.40$

UtahState

UNIVERSI

• Careful for propulsion (where combustion occurs) invariably... $\gamma < 1.40$

Medicination Considerations Engineering

UNIVERSITY

Ratio of Specific Heats (concluded)

 $\gamma = \frac{c_p}{c_v}$ key parameter for compressible flow analysis

Approximate Specific Heat Ratio for Various Gases, at moderate temperatures

Gas	Ratio of Specific Heats
Carbon Dioxide	1.3
Helium	1.66
Hydrogen	1.41
Methane or Natural Gas	1.31
Nitrogen	1.4
Oxygen	1.4
Standard Air	1.4
Water (steam)	1.2855

Medienteel & Flarcepeee Engineering

Thermodynamics Summary

• Equation of State:
$$p = \rho R_g T - \triangleright R_g = \frac{R_u}{M_w}$$

- $R_u = 8314.4126$ J/⁰K-(kg-mole) - $R_{g (air)} = 287.056$ J/⁰K-(kg-mole)

• Relationship of R_g to specific heats, γ

$$C_p = C_v + R_g$$

• Internal Energy and Enthalpy

$$h = e + Pv$$

$$C_{v} = \left(\frac{de}{dT}\right)_{v}$$

MAE 5420 - Compressible Fluid Flow

UtahState

UNIVERSIT

UtahState

Medicinites Clarcepted Engineering

Thermodynamics Summary (cont'd)

• First Law of Thermodynamics, reversible process

$$de = dq - pdv$$
 $dh = dq + vdp$

• First Law of Thermodynamics, *isentropic process* (adiabatic, reversible)

$$de = -pdv$$

$$dh = vdp$$

Medicination Considerations Engineering

Thermodynamics Summary (cont'd)

• Second Law of Thermodynamics, reversible process

$$S_2 - S_1 = C_p \ln_2 \left[\frac{T_2}{T_1}\right] - R_g \ln \left[\frac{p_2}{p_1}\right]$$

• Second Law of Thermodynamics, *isentropic process* (adiabatic, reversible) ----> $s_2 - s_1 = 0$

$$\frac{p_2}{p_1} = \left[\frac{T_2}{T_1}\right]^{\frac{\gamma}{\gamma-1}} \qquad \qquad \left[\frac{p_2}{p_1}\right] = \left[\frac{\rho_2}{\rho_1}\right]^{\gamma}$$

UtahState

UNIVERSIT

Medienteel & Flarcepeee Engineering

Thermodynamics Summary (cont'd)

• Speed of Sound for calorically Perfect gas

$$\mathbf{c} = \sqrt{\left[\frac{\partial \mathbf{p}}{\partial \boldsymbol{\rho}}\right]_{\Delta \mathbf{s} = 0}} = \sqrt{\gamma R_g T}$$

• Mathematic definition of Mach Number

$$M = \frac{V}{\sqrt{\gamma R_g T}}$$

MAE 5420 - Compressible Fluid Flow

UtahState

UNIVERSIT

Medienteel & Flarospece Engineering

Thermodynamics Summary (concluded)

• For a mixed gas

UtahState

$$\bar{M}_{w} = \frac{\sum_{j} V_{j} (M_{w})_{j}}{\sum_{j} V_{j}} = \sum_{j} \left(\frac{V_{j}}{\sum_{k} V_{k}} (M_{w})_{j} \right) = \sum_{j} \left(V_{frac_{j}} (M_{w})_{j} \right)$$

$$\bar{c_p'} = \frac{\sum_{j} n_j (c_p')_j}{\sum_{j} n_j} = \sum_{j} (V_{\text{frac}_j} (c_p')_j) \rightarrow c_p' = \text{Molar specific heat} \underset{(\frac{J}{\text{kg-mol}^\circ K})}{(\frac{J}{\text{kg-mol}^\circ K})}$$

$$\bar{c_p} = \frac{\bar{c_p'}}{\bar{M}_w} = \frac{1}{\bar{M}_w} \sum_{j} \left(V_{\text{frac}_j} M_{w_j} c_{p_j} \right) \rightarrow \text{mass specific heat}_{(\frac{J}{\lg^\circ K})}$$

Same holds for c_v

Medicinated & Flavourpeiros Engineering **UtahState** Supersonic Flow Field Examples

• Which aircraft Is moving faster?

MAE 5420 - Compressible Fluid Flow

UNIVERSIT

UtahState UNIVERSITY

Medicinies & Ferospece Engineering

SR-71 Near Field Shock Wave Patterns

Speed of sound across each successive shock wave is Higher (temperature increases) ... wave catch up and Reinforce each other

UtahState

Medicinfect & Flarospece Engineering

Effect of Local Speed of Sound on Shock Wave Propagation

Boom Generating Aircraft

Probing Data at Mach 1.25 and Alt=44,000 ft

Medicinies & Flarospece Engineering

Effect of Local Speed of Sound on Shock Wave Propagation (2)

Probing Data at Mach 1.25 and Alt=31,000 ft

- As vertical separation increases,
 - Tail shock moves aft

UtahState

UNIVERSITY

- Overpressures decrease
- Inlet and canopy shocks move forward
- Plume pressures collapse to one curve

Probing Data at Mach 1,25 and Alt=44,000 ft

- As vertical separation increases,
- Tail shock moves aft
 - Overpressures decrease
- Inlet and canopy shocks move forward
- Plume pressures collapse to one curve

SR-71 near and mid-field shock wave overpressure signatures

Medienteel & Flarcepeee Engineering

UNIVERSITY

Sonic Boom N-wave

By time boom reaches ground, shocks Have coalesced into familiar sounding N-waves "boom-boom" ... *entirely a result of local sonic velocity changing with temperature*

Medicinfect & Flarospece Engineering UNIVERSITY Speed of Sound Can Tell You a Lot

UtahState

Shuttle Columbia, STS-107 Mission, Sonic Boom during Re-entry, Nevada Station

• Observe the difference?

Time (seconds) From 08:37:06 UTC on February 21, 1997

Shuttle Discovery, STS-81 Mission, Sonic Boom during Re-entry

MAE 5420 - Compressible Fluid Flow

Homework. Section 1

• A sample return Probe is being sent on a 1-year mission from Earth to Mars Via Venus Using "aero-gravity" assist (both both gravity And aerodynamics at Venus used to turn the corner to Mars)

• The aero-assist maneuver at Venus is performed at An altitude of *110 km* above the Surface at a peak Atmospheric velocity of 13.09 km/sec

• At 110 km altitude, the ambient temperature is 147.

• Assume that the Venusian atmospheric Composition by volume is $\{97\% \text{ CO}_2, 3\% \text{ N}_2\}$

• Calculate the Probe Mach number at the Venus aero-assist interface

63°K
$$c_p At -125 ° C$$

 $CO_2 \sim 0.845 kJ/kg ° K$
N ~ 0 995 k I/kg ° K

Medienteel & Ferospers Engineering

Medienteel & Flarospece Engineering

Homework, Section 1 (cont'd)

• Show that for a reversible process

$$s_2 - s_1 = c_v \ln\left[\frac{T_2}{T_1}\right] + R_g \ln\left[\frac{\rho_1}{\rho_2}\right]$$

• and that for a reversible, adiabatic process

$$\left[\frac{T_2}{T_1}\right] = \left[\frac{\rho_2}{\rho_1}\right]^{\gamma-1}$$

MAE 5420 - Compressible Fluid Flow

Medicinated & Flarospece Engineering

Homework, Section 1 (cont'd)

• Show that for an ideal gas the following Useful relationships *hold*

