

Section 2: Lecture 2 Simple Applications of Integral Equations of Motion

Anderson: Chapter 2 pp. 41-54

Review

Continuity (conservation of mass)

$$-\iint_{C.S.} \left(\rho \overset{->}{V} \bullet \overset{->}{ds} \right) = \frac{\partial}{\partial t} \left(\iiint_{c.v.} \rho dv \right)$$

• Steady One-dimensional Flow

$$\frac{\partial}{\partial t} \left(\iiint_{C,V_1} \rho dV \right) = 0 = -\iint_{C,S_1} \left(\rho \overset{->}{V} \bullet \overset{->}{ds} \right) \to \rho_1 V_1 A_1 = \rho_2 V_2 A_2$$

Review (continued)

• Newton's Second law-- Time rate of change of momentum Equals integral of external forces

$$\iiint_{C.V.} \rho f_b dv - \iiint_{C.S.} (p) dS + \iiint_{C.S.} (f \times dS) | \frac{dS}{S_{C.S.}} =$$

$$\iiint_{C.S.} (\rho V \bullet dS)^{->} V + \iiint_{C.V.} \frac{\partial}{\partial t} (\rho V) dv$$

• Steady, Inviscid 1-D Flow, Body Forces negligible

$$p_1 A_1 - p_2 A_2 = \rho_2 V_2^2 A_2 - \rho_1 V_1^2 A_1$$

Review (concluded)

Conservation of Energy--

$$\frac{\partial}{\partial t} \iiint_{C.V.} \left(\rho \left(e + \frac{\|V^2\|}{2} \right) dv \right) + \iint_{C.S.} \rho \overset{->}{V} \cdot d\overset{->}{S} \left(e + \frac{\|V^2\|}{2} \right) =$$

$$\iiint_{C.V.} (\rho \overset{->}{f} dv) \cdot \overset{->}{V} - \iint_{C.S.} (pd\overset{->}{S}) \cdot \overset{->}{V} + \iiint_{C.V.} \left(\rho \left(\overset{\cdot}{q} \right) dv \right)$$

• Steady, Inviscid 1-D Flow, Body Forces negligible

Example Usage: Engine Thrust Model

• Steady, Inviscid, quasi One-Dimensional Flow Through Ramjet

• From a balance of forces, thrust of jet engine is axial component of the integral of internal pressure forces acting On wall minus integral of external Pressure forces acting on wall

• Due to symmetry
Non axial pressure
forces Cancel out

$$Thrust = \left[\iint_{wall} p_i dA_{wall} - \iint_{wall} p_{\infty} dA_{wall} \right]_x = \left[\iint_{wall} p_i dA_{wall} \right]_x - p_{\infty} \left(A_e - A_i \right)$$

Example Usage: Engine Thrust Model

• Apply Steady, Inviscid, quasi One-Dimensional Flow Through Ramjet

$$-\iint_{C.S.} (p) dS = \iint_{C.S.} (\rho V \bullet dS)^{->} V$$

Integrate in axial direction

• Due to symmetry Non axial pressure forces Cancel out

Example Usage: Engine Thrust Model (cont'd)

• Adding $(p_e A_e - p_{\infty} A_e)$ to Both Sides, and collecting terms

$$\left[\iint\limits_{wall}p_{i}dA_{wall}\right]_{x}+p_{\infty}A_{i}-p_{e}A_{e}+\left(p_{e}A_{e}-p_{\infty}A_{e}\right)=\stackrel{\cdot}{m_{e}}V_{e}-\stackrel{\cdot}{m_{i}}V_{i}+\left(p_{e}A_{e}-p_{\infty}A_{e}\right)\rightarrow$$

$$\int \int \int p_i dA_{wall} + p_{\infty} (A_i - A_e) = m_e V_e - m_i V_i + (p_e A_e - p_{\infty} A_e)$$

But from balance of forces

Integrated Pressure Forces Acting on External + Internal Surface of Engine Wall = Thrust

$$Thrust = \left[\iint_{wall} p_i dA_{wall} \right]_x - p_{\infty} (A_e - A_i)$$

$$Thrust = m_e V_e - m_i V_i + (p_e A_e - p_{\infty} A_e)$$

Rocket Thrust Equation

Thrust =
$$\stackrel{\cdot}{m_e} V_e + (p_e A_e - p_{\infty} A_e)$$

$$m_i = 0$$

• Thrust + Oxidizer enters combustion Chamber at ~0 velocity, combustion Adds energy ... High Chamber pressure Accelerates flow through Nozzle Resultant pressure forces produce thrust

MAE 5420 - Compressible Fluid Flow

Thrust Equation, Alternate Formulation

Newton

"The acceleration produced by a force is directly proportional to the force and inversely proportional to the mass which is being accelerated"

Newton's Second law
$$\overline{F} = m \overline{a} = m \frac{d\overline{V}}{dt}$$

- •But what happens when the mass is no longer constant?
- Newton recognized that the early formulation of second law was incomplete and modified the formulation accordingly

$$\overline{F} = \frac{d[m\overline{V}]}{dt} = \frac{d[\overline{P}]}{dt} \Rightarrow \overline{P} = m\overline{V} \begin{bmatrix} \text{"momentum vector"} \end{bmatrix}$$

Conservation of momentum

 For every action, there is an equal and oppposite RE-action

Conservation of momentum

Look at a rocket in horizontal flight

$$\sum_{\text{external}} \overline{F} = \frac{d\overline{P}}{dt} = \frac{d[M\overline{V}]}{dt}$$

$$M V = [M - \Delta M][V + \Delta V] + \Delta M[V - U_{ex}]$$

$$M V = M V - \Delta M V + M \Delta V - \Delta M \Delta V + \Delta M V - \Delta M U_{ex}$$

$$M \Delta V = \Delta M U_{ex} + \Delta M \Delta V$$

Dividing by ∆t and evaluating limit {∆M, ∆V, ∆t} -> 0

$$M \frac{\Delta V}{\Delta t} = \frac{\Delta M}{\Delta t} U_{ex} + \Delta M \frac{\Delta V}{\Delta t}$$

We shrink time As small as possible

=

 $\lim \left(\Delta M, \Delta V, \Delta t \right) \Rightarrow 0$

Engine massflow

Effective exhaust velocity

 $F = M \frac{dV}{dt} = \frac{dM}{dt} U_{ex}$

Engine thrust equation

what happens here?

- Propellants combine and burn in combustion chamber
- Combustion products exhaust via throat
- Nozzle expands combustion products, increasing velocity & decreasing pressure
- Propellants are initially at zero velocity relative to motor, thus thrust produced by the motor = rate of momentum change + residual pressure force difference

Thrust =
$$m_e V_e + (p_e A_e - p_{\infty} A_e)$$

Thrust =
$$m \operatorname{Ce} \to \operatorname{Ce} = V_e + \frac{p_e A_e - P_{\infty} A_e}{m}$$

Engine thrust equation

Ce —> "Effective Exhaust Velocity"₁₄

MAE 5420 - Compressible Fluid Flow

Pressure Thrust

• Pressure is identical from all directions except for the Area of the exit nozzle. This pressure difference produces a thrust (which may be negative or positive.)

Specific Impulse

• Specific Impulse is a scalable characterization of a rocket's Ability to deliver a certain (specific) impulse for a given weight

Ability to defiver a certain (specific) impulse for a given weight of propellant
$$I_{sp} = \frac{I_{mpulse}}{g_0 M_{propellant}} = \frac{\int_0^t F_{thrust} dt}{g_0 \int_0^t m_{propellant}}$$
Mean specific impulse

• At a constant altitude, with Constant mass flow through engine

$$I_{sp} = \frac{I_{mpulse}}{g_0 M_{propellant}} = \frac{\int_0^t F_{thrust} dt}{g_0 \int_0^t m_{propellant} dt} = \frac{F_{thrust}}{g_0 m_{propellant}} \bullet Instantaneous specific impulse$$

 \cdot Historically, I_{sp} was measured in units of seconds

$$I_{sp} = \frac{|\overline{F}|}{m_p} \Rightarrow \text{(English Units)} \frac{1bf}{1bm/sec} \approx \text{seconds, right?}$$

Wrong! *Ibm*s are not a fundamental unit for mass (Slugs are the fundamental english unit of mass)

$$I_{sp} = \frac{|\overline{F}|}{\dot{m}_p} \Rightarrow (MKS \text{ units}) \frac{Nt}{kg/sec} \approx \frac{kg-m/sec^2}{kg/sec} \approx \frac{m}{sec}$$

Goddard got it wrong!

 \cdot Since most engine manufacturers still give $\,I_{\rm sp}$ in seconds -- we correct for this by letting

$$I_{\rm sp} \equiv \frac{|\overline{\rm F}|}{g_0 \, \dot{m}_p} \Rightarrow g_0 \approx 9.81 \, \frac{\rm m}{\rm sec}^2 \, [acceleration \, of \, gravity \, at \, sea \, level \,]$$
English Units -- use slugs not Ibms!

(MKS units)
$$\frac{\frac{Nt}{kg/sec}}{\frac{m}{sec^2}} \approx \frac{\frac{kg-m/sec^2}{kg/sec}}{\frac{m}{sec^2}} \approx sec$$

$$I_{sp} = \frac{1}{g_0} \frac{F_{thrust}}{M_{propellant}} \rightarrow m_e \equiv m_{propellant} \rightarrow m_e$$

$$I_{sp} = \frac{1}{g_0} \left| V_e + \frac{p_e A_e - p_\infty A_e}{m_e} \right| \equiv \frac{C_e}{g_0}$$

"Units ~ seconds"

• Look at total impulse for a rocket

• Mean I_{sp}

$$I_{sp} = rac{ ext{I}_{mpulse}}{g_0 M_{propellant}} = rac{ ext{\int\limits_0^t F_{thrust}} dt}{g_0 ext{\int\limits_0^t m_{propellant}} dt}$$

• Look at instantaneous impulse for a rocket

• *Not necessarily the same*

$$I_{sp} = \frac{1}{g_0} \frac{F_{thrust}}{\bullet}$$

Example 2

• A man is sitting in a rowboat throwing bricks over the stern. Each brick weighs 5 lbs, he is throwing six bricks per minute, at a velocity of 32 fps. What is his thrust and

$$I_{sp}? F = m_{propellant}C_e = \frac{6_{bricks}}{1\min} \times 5_{\frac{lbm}{brick}} \times 32 \frac{ft}{\sec} \times \frac{1\min}{60 \sec} = \frac{6 \times 5 \times 32}{60 \frac{lbm - ft}{\sec^2} \dots ooops \dots need \dots g_c}$$

$$\frac{6 \times 5 \times 32}{60 \times 5 \times 32} \frac{lbm - ft}{\sec^2} \dots ooops \dots need \dots g_c$$

$$\frac{6 \times 5 \times 32}{60 \times 5} \frac{lbm - ft}{\sec^2} \dots ooops \dots need \dots g_c$$

$$F = \frac{6 \times 5 \times 32}{60} \frac{lbm - ft}{\sec^2} \times \frac{1}{32.1742 \frac{lbm - ft}{lbf - \sec^2}} =$$

$$I_{sp} = \frac{F}{m_{propellant}g_0} = \frac{0.497lbf \times 32.1742 \frac{ft}{\sec^2}}{\frac{6_{bricks}}{1\min} \times 5_{\frac{lbm}{brick}} \times \frac{1\min}{60\sec} \times 32.1742 \frac{lbm - ft}{lbf - \sec^2}} = 0.994 \sec^2$$

How Much Fuel? "The Rocket Equation"

Conservation of momentum leads to the so-called rocket equation, which trades off exhaust velocity with payload fraction. Based on the assumption of short impulses with coast phases between them, it applies to chemical and nuclear-thermal rockets. First derived by Konstantin Tsiolkowsky in 1895 for straight-line rocket motion with constant exhaust velocity, it is also valid for elliptical trajectories with only initial and final impulses.

Re-visit

Newton's Third Law (contd)

Dividing by ∆t and evaluating limit {∆M, ∆V, ∆t} -> 0

$$\begin{bmatrix} M \frac{\Delta V}{\Delta t} = \frac{\Delta M}{\Delta t} U_{ex} + \Delta M \frac{\Delta V}{\Delta t} \\ -\frac{1}{1} \lim \{ \Delta M, \Delta V, \Delta t \} \Rightarrow 0 \end{bmatrix} = M \frac{dV}{dt} = \frac{dM}{dt} U_{ex} = m_{propellant} C_{e}$$

Rocket Equation (cont'd)

$$M\frac{dV}{dt} = \dot{m}_{propellant}C_e = g_0I_{sp}\dot{m}_{propellant} \rightarrow \dot{m}_{propellant} = -\frac{dM}{dt}$$

$$\frac{dV}{dt} = g_0 I_{sp} \frac{-\frac{dM}{dt}}{M} \rightarrow \boxed{dV = -g_0 I_{sp} \frac{dM}{M}} \qquad \text{M} \rightarrow \text{rocket mass}$$

• Assuming constant I_{sp} and burn rate integrating over a burn time t_{burn}

$$\begin{aligned} V_{final} - V_0 &= -g_0 I_{sp} \ln \left[M_{final} \right] + g_0 I_{sp} \ln \left[M_0 \right] = g_0 I_{sp} \ln \left[\frac{M_0}{M_{final}} \right] \\ V_{final} &= V_0 + g_0 I_{sp} \ln \left[\frac{M_0}{M_{final}} \right] \end{aligned}$$

Rocket Equation (cont'd)

Consider a rocket burn of duration t_{burn}

Rocket Equation (cont'd)

• Continuing with the Rocket Equation, Solve for Initial Mass

$$\ln\!\left(\!\frac{M_0}{M_{\mathit{final}}}\!\right) = \frac{V_{\mathit{final}} - V_0}{g_0 \cdot I_{\mathit{sp}}} \rightarrow \frac{M_0}{M_{\mathit{final}}} = e^{\frac{V_{\mathit{final}} - V_0}{g_0 \cdot I_{\mathit{sp}}}} = \frac{M_{\mathit{final}} + M_{\mathit{propellant}}}{M_{\mathit{final}}} = 1 + \frac{M_{\mathit{propellant}}}{M_{\mathit{final}}}$$

Solve for Propellant Burned

$$M_{\substack{propellant \\ burned}} = M_{\substack{final}} \cdot \begin{pmatrix} \frac{V_{\textit{final}} - V_0}{g_0 \cdot I_{\textit{sp}}} \\ -1 \end{pmatrix} \rightarrow \begin{array}{c} \Delta V \equiv V_{\textit{final}} - V_0 \\ M_{\textit{final}} = M_{\textit{"dry}"} + M_{\textit{payload}} \end{array}$$

$$M_{\substack{propellant \ burned}} = \left(M_{"dry"} + M_{payload}\right) \cdot \left(e^{\frac{\Delta V_0}{g_0 \cdot I_{sp}}} - 1\right)$$
 Mass Budget Equation

Specific Impulse (revisited)

 For chemical Rockets, Isp depends on the type of fuel/oxydizer used

Vacuum Isp		
Ft.ef	Oxidza [*]	Isp(s)
Liquid propellents		
Hydrogen (LH2)	Oxygen (LOX)	450
Kerosene (RP-4)	Oxygen (LOX)	260
Monomethyl hydr	azine Nitrogen Tetraoxide	310
Solid propellants		
Powered Al	Ammonium Perchlorate	270

Specific Impulse (revisited)

450 sec is "best you can get" with chemical rockets

Homework, Section 2

• Specific Impulse is a commonly used measure of performance For Rocket Engines, and for steady state-engine operation is defined As:

$$I_{sp} = \frac{1}{g_0} \frac{F_{thrust}}{m_{propellant}} \rightarrow g_0 = 9.8067_{\frac{m}{\sec^2}} (mks)$$

• At 100% Throttle a Solid Rocket Motor has the Following performance characteristics

$$F_{\text{vac}} = 90,000 \text{ Nt}$$
 $F_{\text{sl}} = 60,000 \text{ Nt}$
 $I_{\text{sp}_{\text{vac}}} = 280 \text{ sec.}$

Homework, Section 2

Additional data

 p_{∞} Sea level -- 101.325 kpa

 p_{∞} 20km altitude -- 5.4748 kpa

p_e -- 35 .000 kpa

• Exit nozzle gas has a molecular weight of 19.4831 kg/kg-mole

$$Cp=1649.18_{J/kg-K}$$
 $T_{exit} = 1800 \text{ }^{\circ}\text{K}$

- What is the diameter of the Nozzle exit?
- What is the Nozzle Exit Mach Number
- What is the Specific Impulse and Thrust of the Rocket motor at 20 km altitude?

Homework, Section 2, Concluded

• If our Rocket Weighs 10,000 kg Dry, how Much Propellant is Needed to Accelerate by 1 km/sec @ 20,000 meters altitude change in velocity