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MAE 5420 - Compressible Fluid Flow

Section 2: Lecture 2

Simple Applications of Integral Equations of

Motion

Anderson: Chapter 2 pp. 41-54
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Review

• Continuity (conservation of mass)

• Steady One-dimensional Flow
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Review (continued)

• Newton’s Second law-- Time rate of change of momentum

Equals integral of external forces

• Steady, Inviscid 1-D Flow, Body Forces negligible
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Review (concluded)

• Conservation of Energy--

• Steady, Inviscid 1-D Flow, Body Forces negligible
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Example Usage: Engine Thrust Model
• Steady, Inviscid, quasi One-Dimensional Flow Through Ramjet

• From a balance of forces, thrust of jet 

engine is axial component of the

integral of internal pressure forces 

acting On wall minus integral of external 

Pressure forces acting on wall

Thrust = pidAwall
wall
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• Due to symmetry 

Non axial pressure 

forces Cancel out

Stephen Whitmore




6
MAE 5420 - Compressible Fluid Flow

Example Usage: Engine Thrust Model
• Apply Steady, Inviscid, quasi One-Dimensional Flow Through Ramjet
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Integrate in axial direction

• Due to symmetry 

Non axial pressure 

forces Cancel out
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Example Usage: Engine Thrust Model (cont’d)

• Adding                                     to Both Sides, and collecting terms peAe ! p"Ae( )

Integrated Pressure

Forces Acting on 

External + Internal

Surface of Engine

Wall = Thrust Thrust = m
•

e Ve ! m
•

i Vi + peAe ! p"Ae( )

• But from balance of forces

Thrust = pidAwall
wall
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Rocket Thrust Equation

m

•

i = 0

Thrust = m
•

e Ve + peAe ! p"Ae( )
• Thrust + Oxidizer enters combustion

Chamber at ~0 velocity, combustion

Adds energy … High Chamber pressure

Accelerates flow through Nozzle

Resultant pressure forces produce thrust

Stephen Whitmore
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Thrust Equation, Alternate Formulation

Stephen Whitmore
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Thrust Equation, Alternate Formulation (cont’d)

Stephen Whitmore
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Thrust Equation, Alternate Formulation (cont’d)

Stephen Whitmore
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Thrust Equation, Alternate Formulation (cont’d)

Stephen Whitmore
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Thrust Equation, Alternate Formulation (cont’d)

Effective exhaust velocity
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Thrust Equation, Alternate Formulation (cont’d)

Thrust = m
•

Uex !Uex = Ve +
peAe " P#Ae

m
•

Ce Ce

Ce  —>  “Effective Exhaust Velocity”

Stephen Whitmore
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Pressure Thrust

• Pressure is identical from all directions except for the Area of the exit 
nozzle.  This pressure difference produces a thrust (which may be 
negative or positive.)



MAE 5420 Compressible Fluids

Specific Impulse
• Specific Impulse is a scalable characterization of a rocket’s
Ability to deliver a certain (specific) impulse for a given weight
of propellant

Mean specific impulse

• At a constant altitude, with Constant mass flow through engine

• Instantaneous specific impulse

Stephen Whitmore


Stephen Whitmore
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Specific Impulse (cont’d)

Goddard got it wrong!

Stephen Whitmore


Stephen Whitmore
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Specific Impulse (cont’d)

“Units ~ seconds”

Stephen Whitmore
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Specific Impulse (cont’d)

• Look at total impulse for a rocket

• Mean Isp

Stephen Whitmore
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Specific Impulse (cont’d)

• Look at instantaneous impulse for a rocket

Instantaneous 

• Not necessarily the same

Stephen Whitmore
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Example 2
• A man is sitting in a rowboat throwing bricks over the 

stern.  Each brick weighs 5 lbs, he is throwing six bricks 
per minute, at a velocity of 32 fps.  What is his thrust and 
Isp?

That is why we 
p r e f e r m e t r i c 
Units!

Stephen Whitmore
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Rocket Equation

Stephen Whitmore
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Rocket Equation (cont’d)

Re-visit

Stephen Whitmore
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Rocket Equation (cont’d)

• Assuming constant Isp and burn rate …. integrating over a burn time tburn

M -> rocket mass 

Stephen Whitmore
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Rocket Equation (cont’d)

• Consider a rocket burn of duration tburn

Initial Velocity

Final Velocity

Initial Mass

Final Mass

“the Rocket Equation” 

Stephen Whitmore




MAE 5420 Compressible Fluids

Rocket Equation (cont’d)

• Continuing with the Rocket Equation, Solve for Initial Mass

• Solve for Propellant Burned
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Stephen Whitmore
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Specific Impulse 
(revisited)

450 sec is “best you can get” with chemical rockets
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Homework, Section 2

• Specific Impulse is a commonly used measure of performance

For Rocket Engines,and for steady state-engine operation is defined

As:

• At 100% Throttle a Solid Rocket Motor

has the Following performance characteristics

Fvac = 90,000 Nt

Fsl = 60,000 Nt

Ispvac = 280 sec.

Isp =
1

g
0

Fthrust
•

mpropellant

! g
0
= 9.8067 m

sec
2

(mks)

Stephen Whitmore
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Homework, Section 2!
• Additional data!

!p" Sea level ! !-- 101.325 kpa!
!p" 20km altitude !-- 5.4748 kpa!
!pe ! ! !-- 35 .000 kpa!

• Exit nozzle gas has a molecular weight of 19.4831 kg/kg-mole !

Cp=1649.18 J/kg-K,  ……  Texit = 1800 �K!

• What is the diameter of the Nozzle exit?!

• What is the Nozzle Exit Mach Number!

• What is the Specific Impulse and Thrust!
of the Rocket motor at 20 km altitude?!

Stephen Whitmore
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Summary (concluded)

• Conservation of Energy--

• Steady, Inviscid quasi 1-D Flow, Body Forces negligible

Homework, Section 2, Concluded

•  If our Rocket Weighs 10,000 kg Dry, how Much Propellant is 
Needed to Accelerate by 1 km/sec @ 20,000 meters altitude   

Stephen Whitmore
change in velocity

Stephen Whitmore



