

Mechendeel & Ferospece Engineering

Appendix to Section 3: Space Shuttle Tile Thermal Protection System

Medicated & Flarosperes Engineering

Temperature Versus Heat (1)

• Often the concepts of heat and temperature are thought to be the same, but they are not.

• *Temperature* is a number that is related to the average kinetic energy due to the random motion of each molecule of a substance.

In Kelvin degrees, T is directly proportional to the average kinetic energy of the molecules.

• *Heat* is a measurement of the total energy in a substance. That total energy is made up of not only of the *kinetic energies* of the molecules of the substance, but total energy is also made up of the *potential energies* of the molecules. **MAE 5420** *Compressible Fluids*

Medicales Flarospece Engineering

Temperature Versus Heat (2)

- When heat, (i. e., energy), goes into a substance one of two things can happen:
- 1. The substance can experience a raise in temperature. That is, the heat can be used to speed up the molecules of the substance.
- 2. The substance can change state. For example, if the substance is ice, it can melt into water. This change does not cause a raise in temperature. The energy is used to change the bonding between the molecules. Ablative heat shields use this principal to protect reentering spacecraft
- 3. The degree of temperature change for a given heat input (loss) is the *Heat Capacity*

Mechanical & Ferospece Ablation Example

-Heat shield consisting of phenolic resin in a metal "honeycomb" At high heat flux, resin

-Material decomposes via pyrolysis absorbing heat

-Products form a barrier between hot gasses and spacecraft structure

-Surface temperature remains low

Laub, B. Thermal Protection Technology and Facility Needs for Demanding Future Planetary Missions, NASA Ames Research Center, October 2003

MAE 5420 Compressible Fluids

Engineel

• More Exotic Thermal Protection Systems Required

Meenendeel & Flarosperes Engineering

Thermal Soak

• Space Shuttle Thermal Protection System "soaks up" heat and stores it internally due to its very high heat capacity and low thermal conductivity

UtahState UNIVERSITY

Mechenleel & Flarospece Engineering

Thermal Soak (4)

Density	144.2 kg/m ³ (9 lb/ft ³ LI-900) 352.5 kg/m ³ (22 lb/ft ³ LI-2200)	
Specific heat	fic heat 0.628 KJ/kg-K (0.15 BTU/lb-°F)	
Thermal conductivity	0.0485 W/m-k (0.028 BTU/ft-hr-°F) at 21 °C)	
	0.126 W/m-k (0.073 BTU/ft-hr-°F at 1093 °C)	

Maximum reuse temperature

>1260 °C

Maximum single 1538 °C use temperature

Reusability at 2300 °F

>100 missions

MAE 5420 Compressible Fluids

	Material	Thermal
	<u>Iviateriai</u>	$\underline{W}/(\underline{m}\cdot\underline{K})$
	Shuttle Tile (LI-900)	0.048-0.126
	Air	0.025
	Rubber	0.16
	Thermal grease	0.7 - 3
	Thermal <u>epoxy</u>	1 - 7
	<u>Glass</u>	1.1
	Concrete, stone	1.7
	Sandstone	2.4
	Stainless steel	$12.11 \sim 45.0$
	Lead	35.3
	Aluminium	220 (pure)
	Alummum	120180 (alloys
	Gold	318
	<u>Copper</u>	380
	<u>Silver</u>	429
	Diamond	900 - 2320

More or Less ... Only Air is a better insulator (except for exotic materials like aero gels)

... a copper penny conducts heat almost 7000 Times faster than a shuttle tile

Compare Shuttle Tile Thermal Conductivity to Conventional Materials

Machanical & Flaroge

12

Because thermal conductivity of shuttle tile is so low ... heat is radiated back from the surface faster than it is absorbed into the body

- --- Assume 1260 C surface temperature
- --- 80 C interior wall temperature
- --- 10 cm thick tile

UtahState

UNIVERSIT

Always work in absolute temperature units

Mechanical & Ferosoa

$$\left(\mathcal{E}\sigma T^{4}\right)_{radiation} = 0.85 \cdot 5.6704 \times 10^{-8} \left(1260 + 273\right)^{4} \left(\frac{1}{100}\right)^{2} = 26.62 \text{ W/cm}^{2}$$

radiation back f rom surf ace

Tile radiates back 180 times more heat than it Conducts into the structure!

$$= 0.126 \frac{(1260 - 80)}{0.1} \left(\frac{1}{100}\right)^2 = 0.149 \text{ W/cm}^2$$

"heat transfer rate per unit area"

14

Medicales Ferospece Engineering

Thermal Soak (Revisited)

• Space Shuttle Thermal Protection System "soaks up" heat and stores it internally due to its very high heat capacity and low thermal conductivity

Medicailes Carospers Engineering

What Happens as Shuttle Tile is heated? (3)

But the Shuttle Tiles Still Stored a Lot of Heat That Had to be Removed Post Landing!

UtahState UNIVERSITY What Happens when a penny is heated? (2) • Wall gradient is rapidly neutralized and whole penny heats up

... no insulation properties at all

