Appendix to Section 3: Space Shuttle Tile Thermal Protection System
Temperature Versus Heat (1)

- Often the concepts of heat and temperature are thought to be the same, but they are not.

- **Temperature** is a number that is related to the average kinetic energy due to the random motion of each molecule of a substance.

In Kelvin degrees, T is directly proportional to the average kinetic energy of the molecules.

- **Heat** is a measurement of the total energy in a substance. That total energy is made up of not only of the kinetic energies of the molecules of the substance, but total energy is also made up of the potential energies of the molecules.
Temperature Versus Heat (2)

• When heat, (i.e., energy), goes into a substance one of two things can happen:

1. The substance can experience a raise in temperature. That is, the heat can be used to speed up the molecules of the substance.

2. The substance can change state. For example, if the substance is ice, it can melt into water. This change does not cause a raise in temperature. The energy is used to change the bonding between the molecules. Ablative heat shields use this principal to protect reentering spacecraft.

3. The degree of temperature change for a given heat input (loss) is the Heat Capacity.
Aerodynamic Heating on a Body

\[
\frac{\partial}{\partial t} \iiint_{C.V.} \left(\rho \left(e + \frac{\|V^2\|}{2} \right) \right) dv + \iint_{C.S.} \vec{V} \cdot d\vec{S} \left(e + \frac{\|V^2\|}{2} \right) = \\
\iiint_{C.V.} (\rho \vec{f} \ dv) \cdot \vec{V} - \iint_{C.S.} (pdS) \cdot \vec{V} + \iiint_{C.V.} \left(\rho \left(\dot{q} \right) \right) dv
\]
Hypersonic Vehicle Design (cont’d)

- Heating vs. performance (Hypersonic Aerodynamics)

Heating is Minimized by Blunt Body .. But so is Lift-to-Drag ratio

- Detached Normal Shockwave On Blunt Leading Edge
 Dissipates significant Portion of heat into flow

- But Also .. Produces High level of Drag

Heating proportional to $1/R_{le}^{1/2}$
Ablation Example

- Heat shield consisting of phenolic resin in a metal “honeycomb” At high heat flux, resin

- Material decomposes via pyrolysis absorbing heat

- Products form a barrier between hot gasses and spacecraft structure

- Surface temperature remains low

MAE 5420 Compressible Fluids
Hypersonic Vehicle Design

(Cont'd)

- Sharp leading Edge has very high heating
 But Much Lower Hypersonic Supersonic Lift-to-Drag

\[
\dot{q}_{\text{max}} \approx \frac{1}{\sqrt{R_{\text{LE}}}}
\]

Oblique Shockwave

- Flow attached at leading edge
 Heating impinges directly

- More Exotic Thermal Protection Systems Required
Thermal Soak

- Space Shuttle Thermal Protection System “soaks up” heat and stores it internally due to its very high heat capacity and low thermal conductivity.
Space Shuttle Thermal Protection System (TPS) “soaks up” heat and stores it internally due to TPS very high heat capacity and low thermal conductivity.
Thermal Soak (3)

Identification number
Each tile has an identification number which tells batch and location. This number can be fed into a computer to produce an identical tile.

Coating
The outer portion of a tile is covered with a black-glazed coating of borosilicate. These tiles do most of the coating job by shedding about 95% of the heat encountered. The remaining 5% is absorbed by the tile’s interior, preventing it from reaching the orbiter’s aluminum skin.

HSRI Shuttle Tile (High Temperature Reusable Surface Insulation)

One of the best “heat soaks” in the world

Silica (SiO₂)

Composition
90% air, 10% silica fibers a few millimeters thick. The tiles feel similar to plastic foam. The silica fibers are derived from high-quality sand.

Glue
A silicon-rubber glue similar to common bathtub caulking, bonds a tile to a felt pad, that is in turn bonded to the orbiter’s skin. The felt absorbs the stresses of airframe bending that could damage the tiles.

Mostly made up of empty space
Thermal Soak (4)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>144.2 kg/m3 (9 lb/ft3 LI-900)</td>
</tr>
<tr>
<td></td>
<td>352.5 kg/m3 (22 lb/ft3 LI-2200)</td>
</tr>
<tr>
<td>Specific heat</td>
<td>0.628 KJ/kg-K (0.15 BTU/lb-°F)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.0485 W/m-k (0.028 BTU/ft-hr-°F) at 21 °C</td>
</tr>
<tr>
<td></td>
<td>0.126 W/m-k (0.073 BTU/ft-hr-°F at 1093 °C)</td>
</tr>
<tr>
<td>Maximum reuse temperature</td>
<td>>1260 °C</td>
</tr>
<tr>
<td>Maximum single use temperature</td>
<td>1538 °C</td>
</tr>
<tr>
<td>Reusability at 2300 °F</td>
<td>>100 missions</td>
</tr>
</tbody>
</table>
Compare Shuttle Tile Thermal Conductivity to Conventional Materials

More or Less … Only Air is a better insulator (except for exotic materials like aero gels)

… a copper penny conducts heat almost 7000 times faster than a shuttle tile
What Happens as Shuttle Tile is Heated?

“heat transfer rate per unit area”

\[
\left(q_{\text{in}} \right)_{\text{convective}} = \left(\varepsilon \sigma T^4 \right)_{\text{radiation back from surface}} - \left(k \frac{\partial T}{dx} \right)_{\text{conduction into tile (soak)}}
\]

\[
\sigma = 5.670400(40) \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}
\]
What Happens as Shuttle Tile is heated? (2)

Because thermal conductivity of shuttle tile is so low … heat is radiated back from the surface faster than it is absorbed into the body

--- Assume 1260 °C surface temperature
--- 80 °C interior wall temperature
--- 10 cm thick tile

Always work in absolute temperature units

\[
(\varepsilon \sigma T^4)_{\text{radiation back from surface}} = 0.85 \times 5.6704 \times 10^{-8} \times (1260 + 273)^4 \times \left(\frac{1}{100}\right)^2 = 26.62 \text{ W/cm}^2
\]

Tile radiates back 180 times more heat than it conducts into the structure!

\[
-k \frac{dT}{dx}_{\text{conduction into tile (soak)}} = 0.126 \times \frac{(1260 - 80)}{0.1} \times \left(\frac{1}{100}\right)^2 = 0.149 \text{ W/cm}^2
\]

“Heat transfer rate per unit area”

MAE 5420 Compressible Fluids
Thermal Soak (Revisited)

- Space Shuttle Thermal Protection System “soaks up” heat and stores it internally due to its very high heat capacity and low thermal conductivity.
What Happens as Shuttle Tile is heated? (3)

But the Shuttle Tiles Still Stored a Lot of Heat That Had to be Removed Post Landing!
What Happens as penny is heated?

\[
\varepsilon \sigma T^4 = 0.85 \times 5.6704 \times 10^{-8} \left(1260 + 273 \right)^4 \left(\frac{1}{100} \right)^2 = 26.62 \text{ W/cm}^2
\]

Penny would conduct almost 1000 times more heat into structure!

\[- \left(k \frac{dT}{dx} \right) = 0.380 \frac{(1260 - 80)}{0.15} \frac{1}{100} = 29,893 \text{ W/cm}^2 \]

Ouch!
What Happens when a penny is heated? (2)

- Wall gradient is rapidly neutralized and whole penny heats up
 … no insulation properties at all

\[\dot{Q} \sim "heat \ flux" \quad \frac{J}{m_2 \text{ sec}} \]