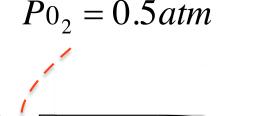

Project 1 (counts as double homework) Due Wednesday October 13, 2021



UtahState

$$A_{throat} = 0.30m^2$$

$$A_{exit} = 23.256m^2$$

• Assume $\gamma = 1.2$, MW = 22

approx normal Curved Shock M. P02

Stagnation Streamline P. P2
P0...

Might be a Shock wave here?

Is nozzle isentropic?

Calculate

- i) Exit mach, M_e
- ii) Exit pressure ,p_e
- iii) Exit Temperature, T_e
- iv) Mass Flow Through Nozzle, dm/dt
- v) Thrust of Nozzle @ sea level, & vacuum
- vi) Compare Non-Ideal Thrust to Thrust of isentropic nozzle @ sea level, & vacuum

Hmmmmm! What is happening here? 48

Hint:

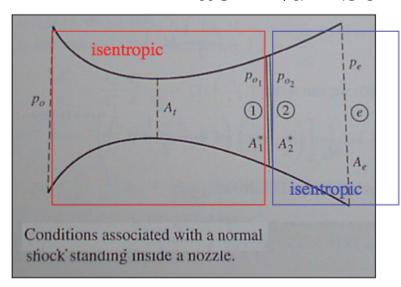
- Compute exit mach number for isentropic nozzle
- Employ normal shock wave equations to determine if there is a shock wave standing in front of Pitot tube
- If nozzle is non isentropic ...
 You'll have to write a solver for (or use trial and error)

$$\frac{P_{02}}{P_{01}} = \frac{2}{(\gamma + 1)\left(\gamma M_1^2 - \frac{(\gamma - 1)}{2}\right)^{\frac{1}{\gamma - 1}}} \left(\frac{\left[\frac{(\gamma + 1)}{2}M_1\right]^2}{\left(1 + \frac{\gamma - 1}{2}M_1^2\right)}\right)^{\frac{(\gamma - 1)}{(\gamma - 1)}} \dots \text{ and}$$

 $P_0 \neq constant, A^* \neq constant \rightarrow \{P_0 \cdot A^*\} = constant$

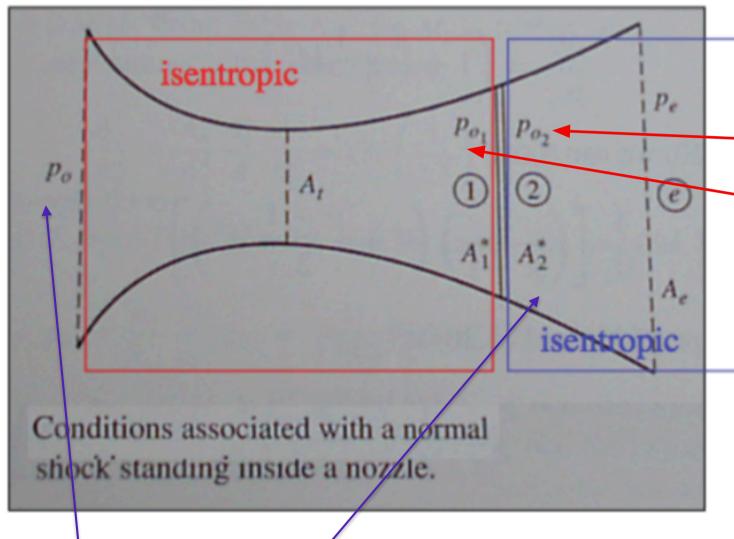
Project 1 Summary (show calculations)

Operating Condition	Sea Level	Vacuum
Non-Isentropic Nozzle (with Embedded Shock Wave)	Massflow: Shock Position: Mach Before Shock: Exit Mach Number: Exit Pressure: Momentum Thrust: Total Thrust; Isp:	Massflow: Shock Position: Mach Before Shock: Exit Mach Number: Exit Pressure: Momentum Thrust: Total Thrust; Isp:
Isentropic Nozzle (with Idealized Flow, Constant A*)	Massflow: Exit Mach Number: Exit Pressure: Momentum Thrust: Total Thrust; Isp:	Massflow: Exit Mach Number: Exit Pressure: Momentum Thrust: Total Thrust; Isp:

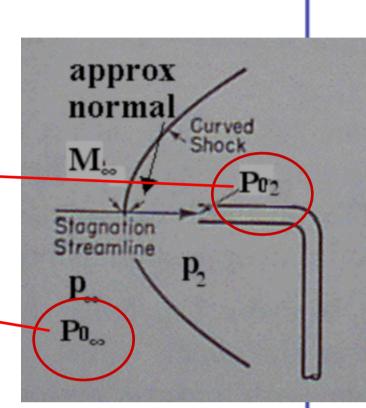

What do These Comparison Tell you?

Solution Procedure Hints

- \rightarrow i) Show that given P_{0_e} / P_{0_1} is inconsistent with isentropic nozzle
- $\Rightarrow ii) \frac{P_{0_e}}{P_{0_1}} = g(M_1) \Rightarrow Solve for mach number ahead of shockwave$
- $\Rightarrow iii) \frac{A_1}{A_1^*} = f(M_1) \Rightarrow Solve for \frac{A_1}{A_1^*}, A_1 \text{ ahead of shockwave}$
- $\rightarrow iv$) $P_0A^* = constant \rightarrow Solve for <math>A_2^*$
- $\rightarrow v)\frac{A_e}{A_2^*} = f(M_e) \rightarrow Solve \ for \ exit \ plane \ mach \ number, p_e, T_e, V_e$
- → calculate performance and compare to isentropic nozzle
- \rightarrow Hmmmmm, what's happening here?


Non-Isentropic Nozzle Solve for Mach Number Ahead of Shock Wave

- REQUIRES ITERATIVE NUMERICAL SOLVER
- USE Newton's method


$$\frac{P_{02}}{P_{01}} = \frac{2}{(\gamma + 1)\left(\gamma M_1^2 - \frac{(\gamma - 1)}{2}\right)^{\frac{1}{\gamma - 1}}} \left(\frac{\left[\frac{(\gamma + 1)}{2}M_1\right]^2}{\left(1 + \frac{\gamma - 1}{2}M_1^2\right)}\right)^{\left(\frac{\gamma}{\gamma - 1}\right)}$$

Non-Isentropic Nozzle Solve for Mach Number Ahead of Shock Wave

USE Newton's method

For Numerical Solution

$$\frac{P_{02}}{P_{01}} = \frac{2}{(\gamma + 1)\left(\gamma M_1^2 - \frac{(\gamma - 1)}{2}\right)^{\frac{1}{\gamma - 1}}} \left(\frac{\left[\frac{(\gamma + 1)}{2}M_1\right]^2}{1 + \frac{(\gamma - 1)}{2}M_1^2}\right)^{\frac{(\gamma - 1)}{\gamma - 1}}$$

Non-Isentropic Nozzle Solve for Mach Number Ahead of Shock Wave (concluded)

$$M_{1(j+1)} = M_{1(j)} - \frac{G(M_{I(j)})}{\left(\frac{\partial G}{\partial M_1}\right)_{(j)}}$$

$$G(M_{1(j)}) = \frac{2}{(\gamma+1)\left(\gamma M_{1(j)}^{2} - \frac{(\gamma-1)}{2}\right)^{\frac{1}{\gamma-1}}} \left(\frac{\left[\frac{(\gamma+1)}{2}M_{1(j)}\right]^{2}}{\left(1 + \frac{\gamma-1}{2}M_{1(j)}^{2}\right)}\right)^{\left(\frac{\gamma}{\gamma-1}\right)} - \left(\frac{P_{0_{2}}}{P_{0_{1}}}\right)$$

$$M_{1(j+1)} = M_{1(j)} - \frac{G(M_{I(j)})}{\left(\frac{\partial G}{\partial M_{1}}\right)_{(j)}} \rightarrow \frac{2^{\left(\frac{3-\frac{2\gamma}{\gamma-1}\right)}\gamma\left(M_{1(j)}^{2}-1\right)^{2}\left(\frac{\left[\left(\gamma+1\right)M_{1(j)}^{2}\right]^{2}}{\left(1+\frac{\gamma-1}{2}M^{2}\right)}\right)^{\left(\frac{\gamma}{\gamma-1}\right)}}{\left[\frac{1}{2}+\gamma\left(M_{1(j)}^{2}-\frac{1}{2}\right)\right]^{\left(\frac{-1}{\gamma-1}\right)}}}{\left(\gamma+1\right)M_{1(j)}\left(2+M_{1(j)}^{2}(\gamma-1)\right)\left[1+\gamma\left(2M_{1(j)}^{2}-1\right)\right]}$$

 \bullet Similar to - M(A/A*) - algorithm ... given starting mach number Iterate to convergence