

Section 7, Homework (8) ... Due Monday November 29, 2021

Part1

Solution Hints: Assume supersonic flow at probe and Wedge has a 10 deg. half angle, work backwards from probe...

Static pressure Measurement is ahead of shock

"Rayleigh Pitot Equation"

MAE 5420 - Compressible Fluid Flow

Section 7, Homework, Part 2

NACA 0012 Airfoil Coordinates

During the late 1920s and into the 1930s, the National Advisory Committee for Aeronautics (NACA) developed a series of thoroughly tested airfoils and devised a numerical designation for each airfoil — a four digit number that represented the airfoil section's critical geometric properties.*

- First digit describing maximum <u>camber</u> as percentage of the <u>chord</u>.
- Second digit describing the distance of maximum camber from the airfoil leading edge in tenths of the chord
- Last two digits describing maximum thickness of the airfoil as percent of the chord.
- *"Fundamentals of aerodynamics", John D. Anderson, Jr., 3rd ed., Chapt. 4.

Section 7, Homework, Part 2

- Consider NACA 0012 Airfoil at 1.5°α.
- Calculate the critical drag rise (subsonic) Mach number for zero wing sweep
- Re-Calculate the M_{cr} assuming 30° wing sweep, Λ
- Compare the effective fineness ratios (t/c), for the unswept and swept wing sections
- What do you conclude?

Mediented & Gerospece

@ zero wing weep .. Calculate M_{∞} $_{cr}$

MAE 5420 - Compressible Fluid Flow

5

5

UtahState

NACA 0012 at $1.5^{\circ}\alpha$ with 30 deg. Wing sweep (Λ)

What is M_{crit} @ 30° wing sweep (Λ)

$$(M_{crit})_{\Lambda} = \frac{(M_{crit})_{0^o}}{\sqrt{1 - \sin^2 \Lambda \cdot \cos^2 \alpha}}$$

What is Fineness Ratio @ 30° wing sweep (Λ)

$$\frac{t}{c_{equiv}} = \frac{t}{c/\cos\Lambda}$$

UtahState UNIVERSITY

Homework 8, Part 3

- Consider NACA 006 airfoil at 6 different Angles of Attack, **Incompressible flow**
- Plot M_{crit} as function of Angle of Attack
- Perform Calculations using the following compressibility corrections
 - o Prandtl-Glauret
 - Contract Karman-Tsien
 - Laitone's Rule
- Compare the resulting curves

