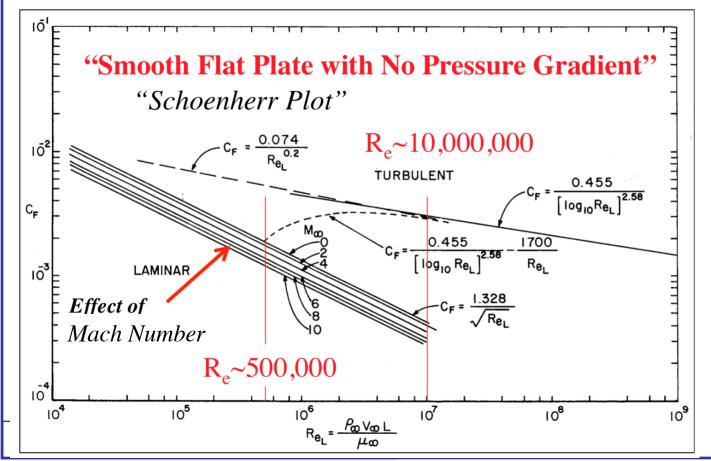


Section 8, Lecture 2 Supersonic Wings with Skin Friction: Accounting for Compressibility

UtahState UNIVERSITY

Compressibility Effects on Skin Friction Model


- We derived previous model assuming incompressible flow
- How about the effects of compressibility?
- No Simple Clean Analytical Solution for Turbulent Flow
- One *commonly used method* \dots evaluate R_e based on averaged conditions within Boundary layer

UtahState UNIVERSITY

Madhanileal & Flarosperes Engineering

Effect of Mach Number on Reynolds Number

$$R_{e} = \frac{\rho \cdot V \cdot c}{\mu} = \left(\frac{p}{R_{g} \cdot T}\right) \cdot \left(\frac{c \cdot V_{\infty}}{\mu_{M}}\right) = \sqrt{\frac{\gamma}{R_{g} \cdot T}} \cdot \left(\frac{p \cdot c}{\mu}\right) \cdot M$$

• But this analysis does not take into account the effect of Boundary Layer Heating

Effect of Compressible Boundary Layer Heating on Reynolds Number

• Incompressible Boundary Layer

UNIVERS

$$R_{e_{\infty}} = \frac{\rho_{\infty} \cdot c \cdot V_{\infty}}{\mu_{\infty}}$$

• Compressible Boundary Layer, Heats Up Density Drops, Viscosity Increases

$$R_{e_{M}} = \frac{\rho_{M} \cdot c \cdot V_{\infty}}{\mu_{M}}$$

Effect of Compressible Boundary Layer Heating on Reynolds Number (2)

• Compressible Boundary Layer

UNIVERS

$$R_{e_{M}} = \frac{\rho_{M} \cdot V_{\infty} \cdot c}{\mu_{M}} = \left(\frac{p_{\infty}}{R_{g} \cdot T_{M}}\right) \cdot \left(\frac{c \cdot V_{\infty}}{\mu_{M}}\right) = \left(\frac{p_{\infty}}{R_{g}}\right) \cdot \left(c \cdot V_{\infty}\right) \cdot \left(\frac{1}{T_{M} \cdot \mu_{M}}\right)$$

• From Sutherland's Formula --- μ as a function of T_M

$$\mu_{M} = \mu_{\infty} \cdot \left(\frac{T_{M}}{T_{\infty}}\right)^{3/2} \cdot \left(\frac{T_{\infty} + C_{s}}{T_{M} + C_{s}}\right)$$

Effect of Compressible Boundary Layer Heating on Reynolds Number (3)

• Substitute into Compressible Reynold's Number

$$R_{e_{M}} = \left(\frac{p_{\infty}}{R_{g}}\right) \cdot \left(\frac{c \cdot V_{\infty}}{\mu_{\infty}}\right) \cdot \left(\frac{1}{T_{M}\left(\frac{T_{M}}{T_{\infty}}\right)^{3/2}} \cdot \left(\frac{T_{\infty} + C_{s}}{T_{M} + C_{s}}\right)\right) = \left(\frac{p_{\infty}}{R_{g} \cdot T_{\infty}}\right) \cdot \left(\frac{c \cdot V_{\infty}}{\mu_{\infty}}\right) \cdot \left(\frac{T_{\infty}}{T_{M}}\right) \frac{1}{\left(\frac{T_{\infty}}{T_{\infty}}\right)^{3/2}} \cdot \left(\frac{T_{\infty} + C_{s}}{T_{M} + C_{s}}\right)\right)$$

• Collecting Terms

UNIVERS

$$R_{e_{M}} = \left(\frac{p_{\infty}}{R_{g} \cdot T_{\infty}}\right) \cdot \left(\frac{c \cdot V_{\infty}}{\mu_{\infty}}\right) \cdot \left(\frac{T_{\infty}}{T_{M}}\right) \frac{1}{\left(\frac{T_{M}}{T_{\infty}}\right)^{3/2} \cdot \left(\frac{T_{\infty} + C_{s}}{T_{M} + C_{s}}\right)} = \left(\frac{\rho_{\infty} \cdot c \cdot V_{\infty}}{\mu_{\infty}}\right) \cdot \left(\frac{T_{\infty}}{T_{\infty}}\right)^{5/2} \cdot \left(\frac{T_{M} + C_{s}}{T_{\infty} + C_{s}}\right) = \left(R_{e_{\infty}} \cdot \left(\frac{T_{M}}{T_{M}}\right)^{5/2} \cdot \left(\frac{T_{M} + C_{s}}{T_{\infty} + C_{s}}\right)\right)$$

Medicinical & Ferospece Engineering

Effect of Compressible Boundary Layer Heating on Reynolds Number (4)

• Substituting

$$R_{e_{M}} = \frac{\rho_{M} \cdot V_{\infty} \cdot c}{\mu_{M}}$$

• Effect of Boundary Layer heating is to Decrease the Effective Reynolds Number from the Freestream Value

$$\left(\frac{R_{e_{M}}}{R_{e_{\infty}}}\right) = \left(\frac{T_{\infty}}{T_{M}}\right)^{5/2} \cdot \left(\frac{T_{M} + C_{s}}{T_{\infty} + C_{s}}\right)$$

Compressibility Effects on Skin Friction Model (cont'd)

• What is the effect on Skin Friction, $T_M \sim T_{avg}$ (average Boundary layer Temperature)

$$\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{compressible} = \frac{7}{225 \begin{bmatrix} R_{e} \end{bmatrix}^{\frac{1}{7}}} = \frac{7}{225 \begin{bmatrix} \frac{\rho Vc}{\mu} \end{bmatrix}^{\frac{1}{7}}} = \frac{7}{225 \begin{bmatrix} \frac{\rho (T_{avg}) c V_{\infty}}{\mu} \end{bmatrix}^{\frac{1}{7}}}$$

$$\rho(T_{avg}) = \rho_{\infty} \frac{T_{\infty}}{T_{avg}} \rightarrow Gas...Law...no...lateral...pressure...gradient$$

$$\rho_{Tavg} = \frac{p_{Tavg}}{R_g \cdot T_{avg}} \rightarrow p_{Tavg} = p_{\infty} \rightarrow \frac{\rho_{Tavg}}{P_{Tavg}} = \frac{T_{avg}}{P_{Tavg}}$$

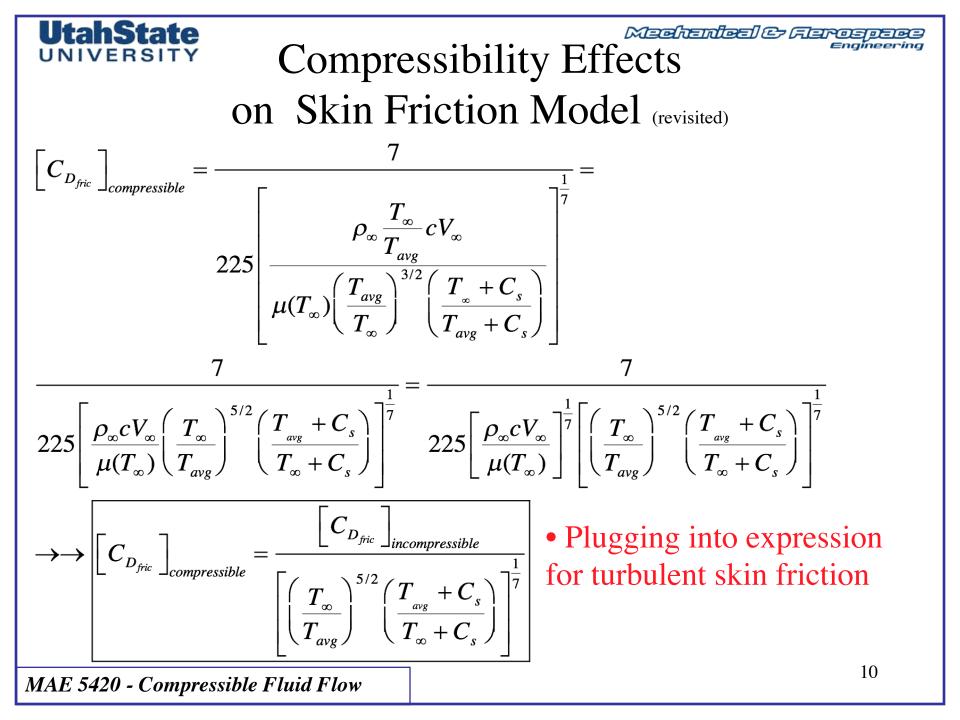
 $p_{Tavg} = p_{\infty} \longrightarrow \frac{\rho_{Tavg}}{\rho} = \frac{T_{avg}}{T}$

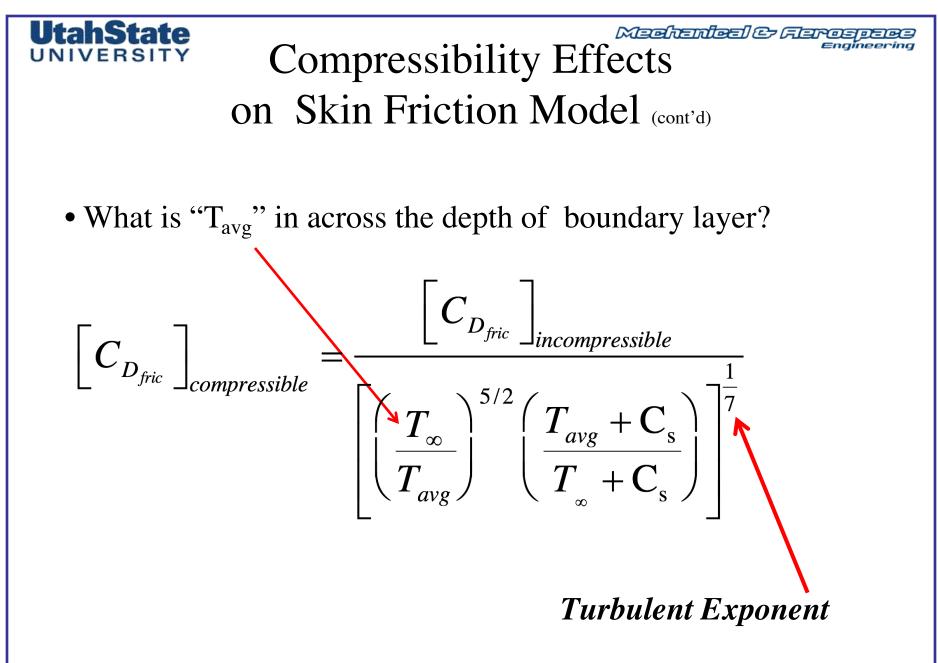
no Lateral Pressure Gradient $\rho_{\infty} = \frac{p_{\infty}}{R \cdot T}$

Mechanical & Flarospace

 $\rightarrow \frac{\rho_{Tavg}}{T} = \frac{T_{avg}}{T}$

Compressibility Effects on Skin Friction Model (cont'd)

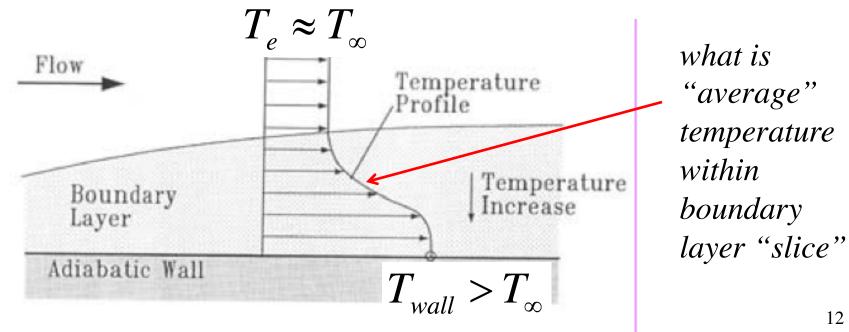

• What is the effect on Skin Friction, $T_M \sim T_{avg}$ (average Boundary layer Temperature)


$$\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{compressible} = \frac{7}{225 \begin{bmatrix} R_{e} \end{bmatrix}^{\frac{1}{7}}} = \frac{7}{225 \begin{bmatrix} \frac{\rho Vc}{\mu} \end{bmatrix}^{\frac{1}{7}}} = \frac{7}{225 \begin{bmatrix} \frac{\rho Vc}{\mu} \end{bmatrix}^{\frac{1}{7}}} = \frac{7}{225 \begin{bmatrix} \frac{\rho (T_{avg})cV_{\infty}}{\mu (T_{avg})} \end{bmatrix}^{\frac{1}{7}}}$$

• From Sutherland's Formula --- μ as a function of T_{avg}

Substitute and Collect terms

 $\rightarrow \mu(T_{avg}) = \mu(T_{\infty}) \left(\frac{T_{avg}}{T_{\infty}}\right)^{3/2} \left(\frac{T_{\infty} + C_s}{T + C_s}\right)$


Medicinical & Ferospece Engineering

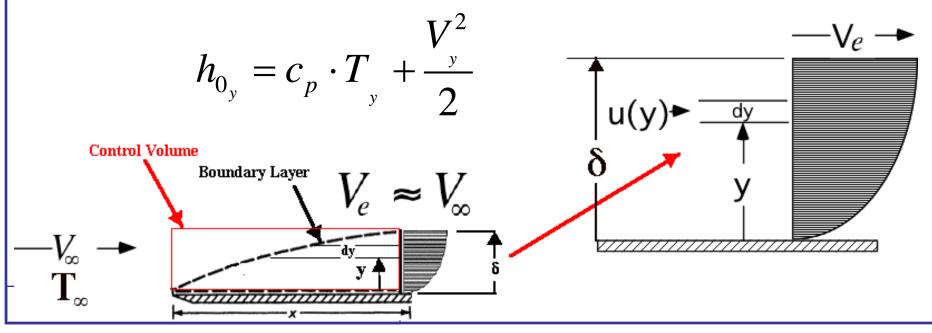
UtahState

Compressibility Effects on Skin Friction Model (2)

• Within boundary layer, gas in contact with the surface is brought to rest as a result of viscosity.

- Decrease in velocity results in rise in temperature.
- For high speed flows, temperature rise is quite large.
- Referred to as the "aerodynamic heating" of a surface.

Mechanical & Flarospace


UtahState UNIVERSITY

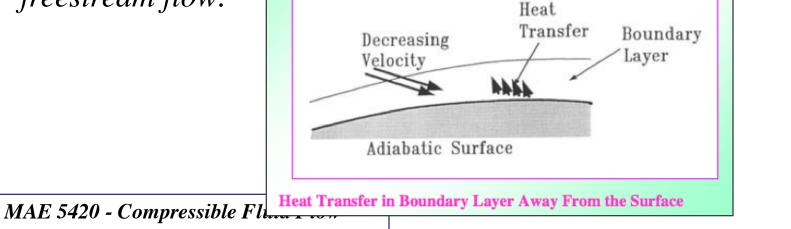
Compressibility Effects on Skin Friction Model (3)

•.. Look at small segment of boundary layer, dy, Flow specific enthalpy entering control volume within dy segment is

$$h_{0_{\infty}} = c_p \cdot T_{\infty} + \frac{V_{\infty}^2}{2}$$

• Specific enthalpy of flow with boundary layer segment $dy \dots$

UtahState UNIVERSITY


Compressibility Effects on Skin Friction Model (4)

• For completely adiabatic boundary layer flow ..

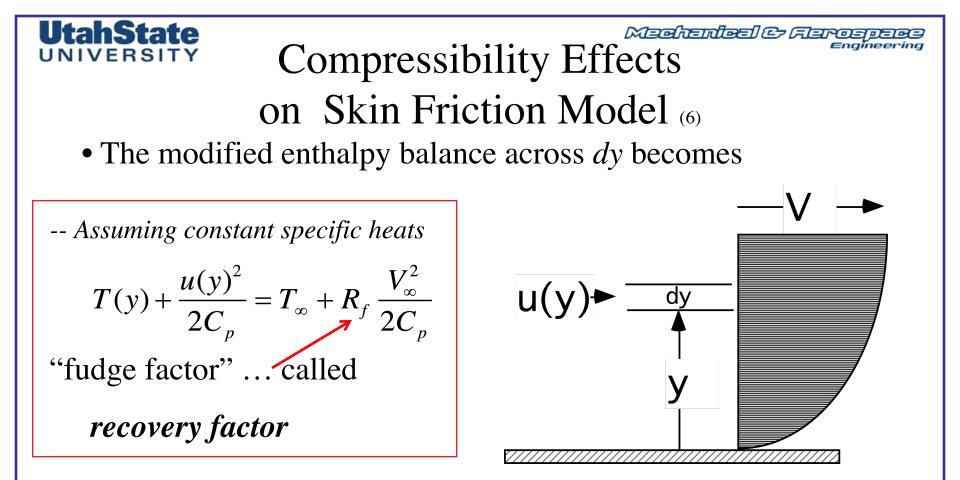
$$h_{0_{\infty}} = c_{p_{\infty}} \cdot T_{w} + \frac{V_{w}^{2}}{2} = c_{p_{y}} \cdot T_{y} + \frac{V_{y}^{2}}{2} = h_{0_{y}}$$

- However, for real high-speed boundary layer flows the actual process between freestream and *x* is not adiabatic.
- "Dissipation" causes heat transfer towards the colder gas in the freestream flow.

14

Medicial & Flarospens

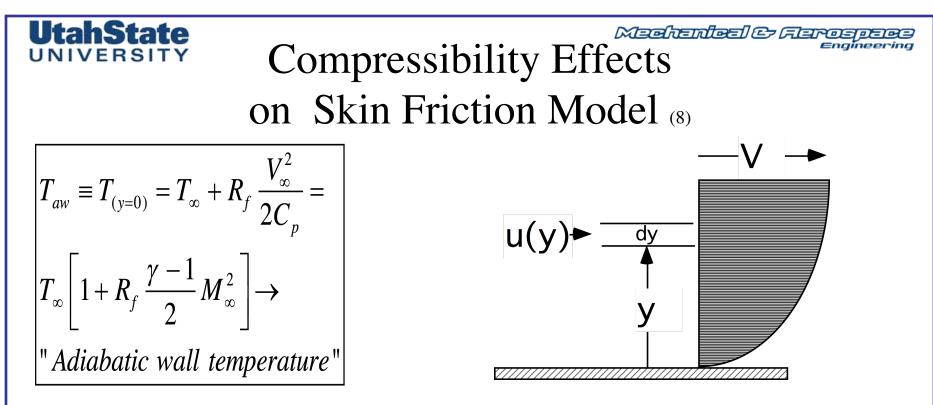
UtahState


Compressibility Effects on Skin Friction Model (5)

• Heat transfer to external flow accounted for using a "Fudge factor" \rightarrow $R_f \equiv$ "Recovery Factor"

• Recovery Factor -- fraction of kinetic energy of the freestream fluid recovered as thermal energy within boundary layer .. The rest of the heat is "dissipated" to the external flow field

$$R_{f} \equiv \frac{T_{aw} - T_{\infty}}{T_{0_{\infty}} - T_{\infty}} \rightarrow T_{aw} = "adiabatic wall temperature"$$


 $T_{aw} \rightarrow \begin{vmatrix} \text{Temperature of the boundarty layer fluid at} \\ \text{the wall when there is no heat transfer from} \\ \text{the boundary layer to the wall} \end{vmatrix}$

• R_f is not a constant ... but is a function of the local flow properties

Compressibility Effects
on Skin Friction Model (7)
$$T(y) + \frac{u(y)^2}{2C_p} = T_{\infty} + R_f \frac{V_{\infty}^2}{2C_p}$$

"fudge factor" ... called
recovery factorIf flow were completely adiabatic ... At
the wall $u_{wall} = 0$ and $\dots T_{wall} = T_0$
 $T(0) + \frac{u(0)^2}{2C_p} = T_{\infty} + 1 \cdot \frac{V_{\infty}^2}{2C_p} = T_0 \bigg|_{R_c=1}$ $R_c = 1$ --> Adiabatic flow
 $R_c = 0$ --> Isothermal flowConversely if all energy were
dissipated as heat $T_{wall} = T_{\infty}$
 $T(0) + \frac{u(0)^2}{2C_p} = T_{\infty} + 0 \cdot \frac{V_{\infty}^2}{2C_p} = T_{\infty} \bigg|_{R_c=0}$

• Reality lies in between More favored to adiabatic flow

• Temperature at wall in a moving compressible fluid stream when there is no heat transfer between the wall and the fluid stream ...

• Sort of a misnomer because boundary layer flow is not adiabatic! ... that is why we Need to use the recovery factor ... to account for non-adiabaticity

- "Adiabatic wall" refers to "no heat transfer" from Boundary layer to the wall
- Heat transfer to the wall $T(y=0) < T_{aw}$

Compressibility Effects on Skin Friction Model (9)

u(y

dv

$$T(y) = T_{\infty} + R_f \frac{V_{\infty}^2}{2C_p} \left(1 - \frac{1}{R_f} \left[\frac{u(y)}{V_{\infty}}\right]^2\right)$$

ItahSta

UNIVERS

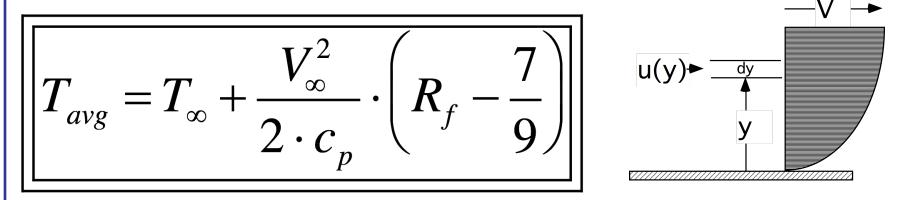
• Calculate the Average Temperature of boundary layer By Integrating Across Boundary layer And dividing by boundary layer height (δ)

$$T_{avg} \approx \frac{1}{\delta} \int_0^{\delta} T(y) dy = \frac{1}{\delta} \int_0^{\delta} T(y) dy = \int_0^1 T\left(\frac{y}{\delta}\right) d\left(\frac{y}{\delta}\right)$$

hahState Mechanical & Farcer **Compressibility Effects** UNIVERSITY on Skin Friction Model (10) • Assuming *R_f* ~ *constant w.r.t. y* $T_{avg} = \frac{1}{\delta} \cdot \int_{0}^{\delta} T(y) \cdot dy = \frac{1}{\delta} \cdot \int_{0}^{\delta} \left| T_{\infty} + R_{f} \frac{V_{\infty}^{2}}{2 \cdot c_{n}} \left(1 - \frac{1}{R_{f}} \left(\frac{u(y)}{V_{\infty}} \right)^{2} \right) \right| \cdot dy =$ $\frac{1}{\delta} \cdot T_{\infty} \cdot \delta + R_f \frac{V_{\infty}^2}{2 \cdot c_n} \cdot \frac{1}{\delta} \int_{0}^{\delta} \left| \left(1 - \frac{1}{R_f} \left(\frac{u(y)}{V_{\infty}} \right)^2 \right) \right| \cdot dy = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_n} \cdot \frac{1}{\delta} \int_{0}^{\delta} \left| \left(1 - \frac{1}{R_f} \left(\frac{u(y)}{V_{\infty}} \right)^2 \right) \right| \cdot dy$

• Assuming "normal" turbulent velocity profile ... (n=7)

$$\frac{u_{(y)}}{V_e} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}} T_{avg} = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left[\left(\frac{y}{\delta}\right)^{1/7}\right]^2\right) \right] \cdot dy$$

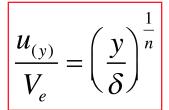

UtahState Mechanical & Flavograd **Compressibility Effects** UNIVERSITY on Skin Friction Model (11)

• Evaluating the Integral

$$T_{avg} = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left[\left(\frac{y}{\delta} \right)^{1/7} \right]^2 \right) \right] \cdot dy = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} = T_{\infty} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right) \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot dy = T_{\alpha vg} + R_f \frac{V_{\infty}^2}{2 \cdot c_p} \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \int_0^{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_f} \left(\frac{y}{\delta} \right)^{2/7} \right] \right] \cdot \frac{1}{\delta} \left[\left(1 - \frac{1}{R_$$

Engineering

 $\mathcal{U}_{(\underline{y})}$



• Valid for 1/7 power Turbulent Flow

UtahState UNIVERSITY

General Turbulent Flow Compressible Model

• Replace "7" with 'n"

$$\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{compressible} = \frac{\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{incompressible}}{\begin{bmatrix} \left(\frac{T_{\infty}}{T_{avg}}\right)^{5/2} \left(\frac{T_{avg} + C_s}{T_{\infty} + C_s}\right) \end{bmatrix}^{\frac{1}{n}}}$$

$$T_{avg} \approx T_{\infty} + \frac{1}{\delta} \frac{V_{\infty}^2}{2c_p} \int_{0}^{\delta} \left(1 - \left[\frac{u(y)}{V_e}\right]^2\right) dy = T_{\infty} + \frac{V_{\infty}^2}{2c_p} \int_{0}^{1} \left(1 - [\xi]^{\frac{2}{n}}\right) dy =$$

$$T_{\infty} + R_{f} \frac{V_{\infty}^{2}}{2C_{p}} \left[1 - \frac{1}{R_{f}} \frac{\left[\xi\right]_{n}^{\frac{2}{n}+1}}{\frac{2}{n}+1} \right] = T_{\infty} + R_{f} \frac{V_{\infty}^{2}}{2C_{p}} \left[1 - \frac{1}{R_{f}} \frac{n}{n+2} \right] = 0$$

$$\left| T_{avg} \approx T_{\infty} \left[1 + \left(R_f - \frac{n}{n+2} \right) \left(\frac{\gamma - 1}{2} M_{\infty}^2 \right) \right] \right|$$

MAE 5420 - Compressible Fluid Flow

• Valid for "general" Turbulent Flow

Mediciniles Considering

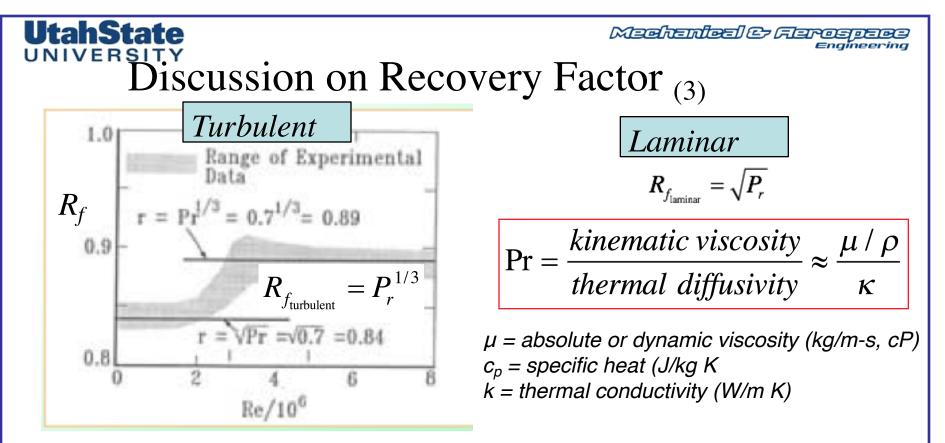
Medicinited & Flarospens Engineering

Discussion on Recovery Factor

• Recall that Recovery Factor \rightarrow fraction of kinetic energy of the freestream fluid recovered as thermal energy within boundary layer .. The rest of the heat is "dissipated" to the external flow field

• Not a "constant" but is dependent on the fluid flow properties

• The value of R_f for a given geometrical flow situation, according to dimensionial analysis is a function of the Reynolds number, the Mach number, and the Prandtl number


$$R_f \rightarrow f(R_e, M, P_r)$$

Medicales Ferospers Engineering

UtahState UNIVERSITY Discussion on Recovery Factor (2)

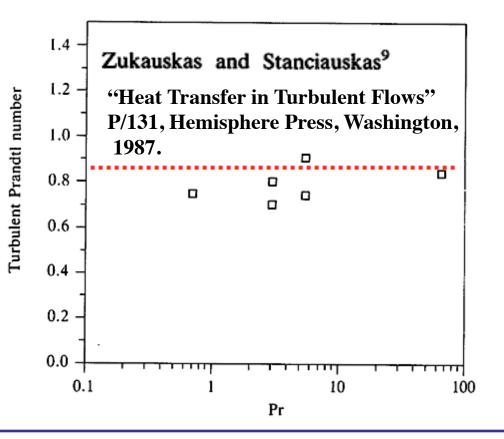
- Experimental studies for flow over a "near flat" surface
- \rightarrow Reynolds number only effects the value of the recovery factor by determining whether the flow in the boundary layer is *laminar* or *turbulent*
- \rightarrow Mach number has a negligible effect on the recovery factor for small surface pressure gradients
- $\rightarrow R_f \text{ primarily } \rightarrow f(P_r)$
- The Prandtl number is a dimensionless parameter of a convecting system that characterizes the regime of convection. (momentum diffusivity) / (thermal diffusivity) }
- P_r measure of relative importance of skin friction and heat transfer in viscous flow.

$$P_{\rm r} = \frac{c_p \mu}{\kappa} \rightarrow \left\{ \mu = \text{dynamic viscosity}, \, \kappa = \text{thermal conductivity} \right\}$$

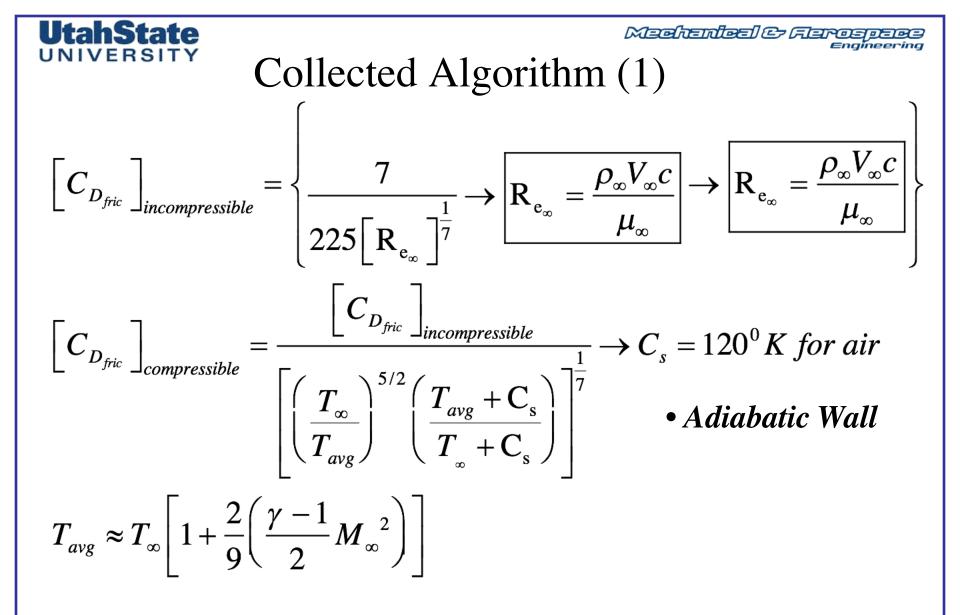
- What values make sense for $R_{f?}$
- P_r can vary widely, But for Turbulent Flow is limited to less than 1
- Typically $0.5 < P_r < 1$

UtahState UNIVERSITY

Prandtl Number

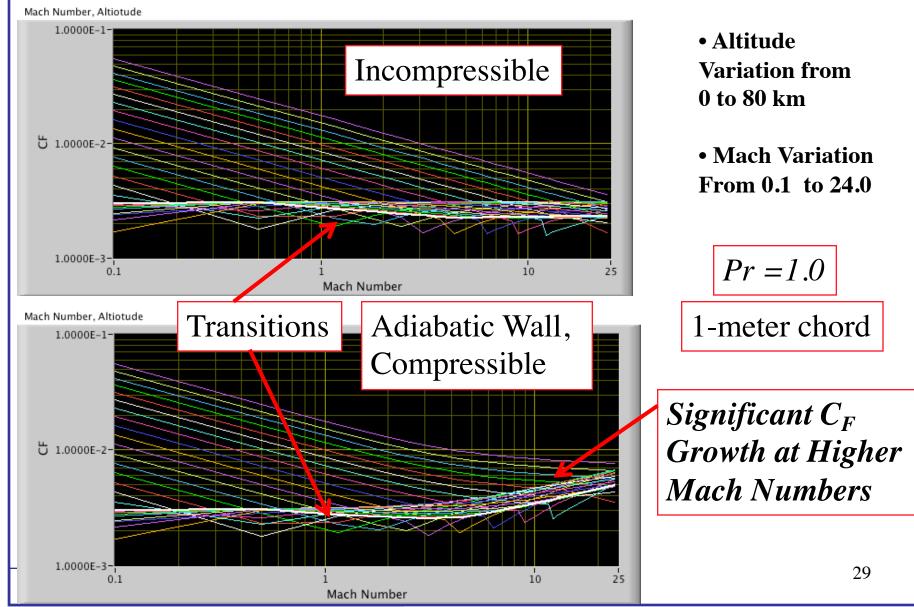

• For Turbulent Flows

$$0.7^{1/3} \le R_{f_{turbulent}} < 1 \rightarrow 0.89 \le R_{f_{turbulent}} <$$

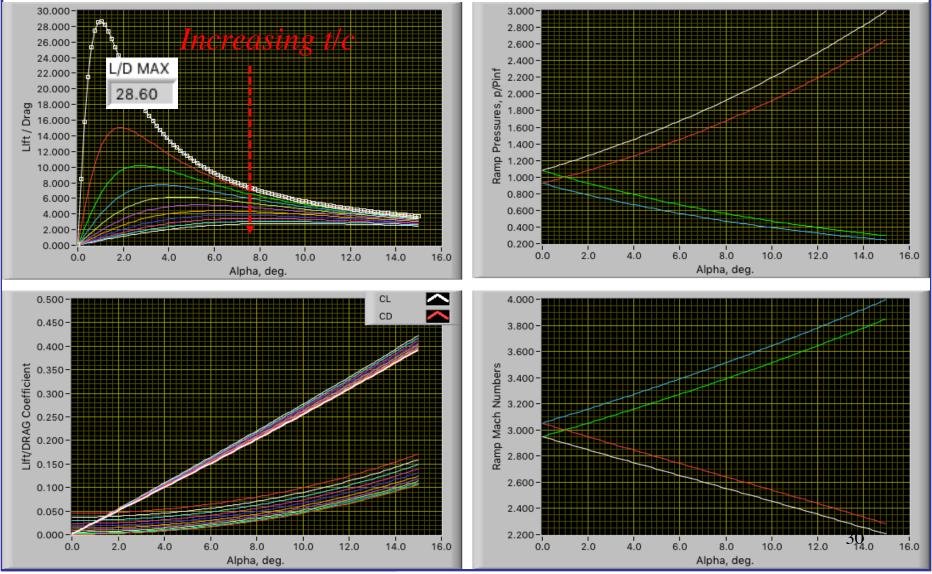

Pr ~ 0.85 for nondissociated "air"

- R_c turbulent ~ 0.95
- Often the Approximation $R_c \sim 1$ is used
- "Unity Prandtl Number Flow

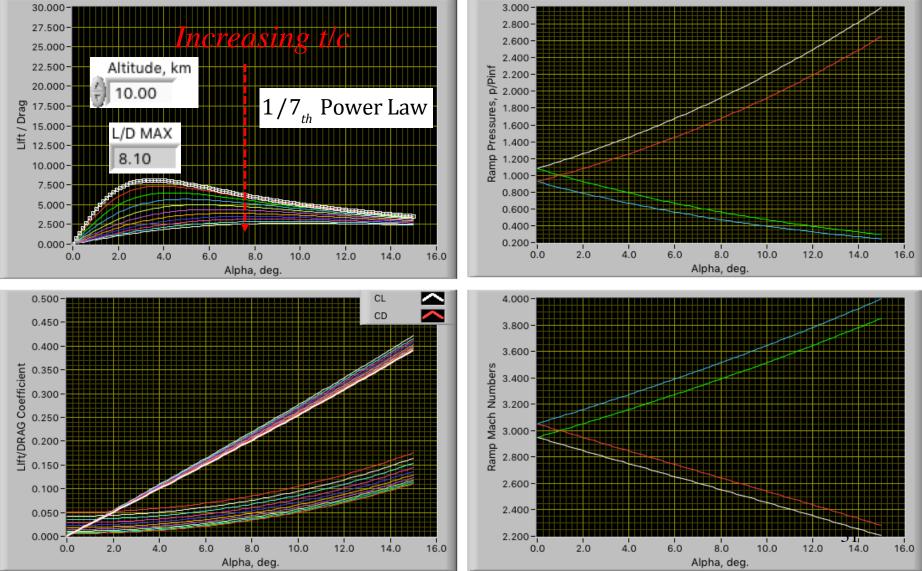
MAE 5420 - Compressible Fluid Flow

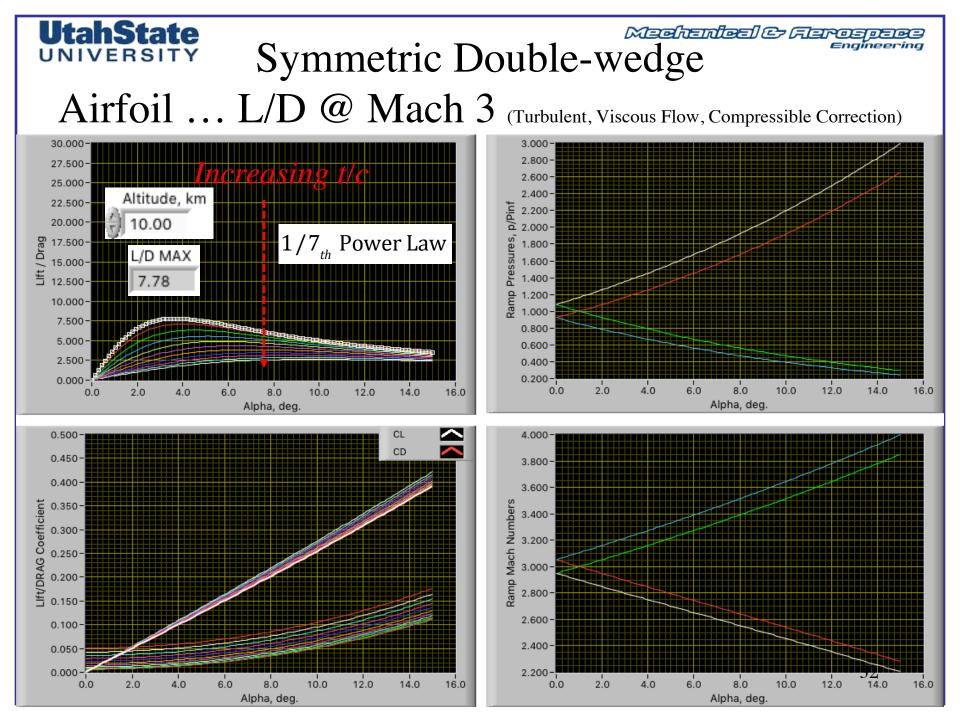


Machenilee Flares



• Valid for Turbulent Flow, Adiabatic Wall, Unity Prandtl Number

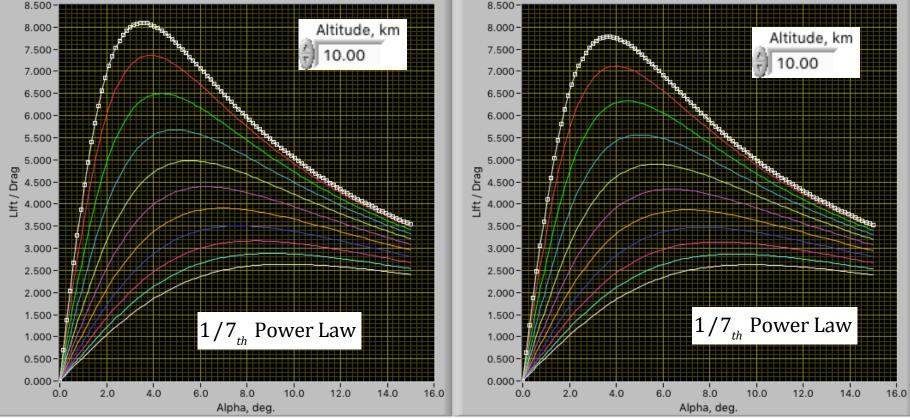

UtahState UNIVERSITY Incompressible, Adiabatic Wall Skin Friction Versus Mach Number



UtahState UNIVERSITY Symmetric Double-wedge Airfoil ... L/D @ Mach 3 (Inviscid)

UtahState Symmetric Double-wedge Airfoil ... L/D @ Mach 3 (Turbulent, Viscous Flow, Incompressible)

UNIVERSITY

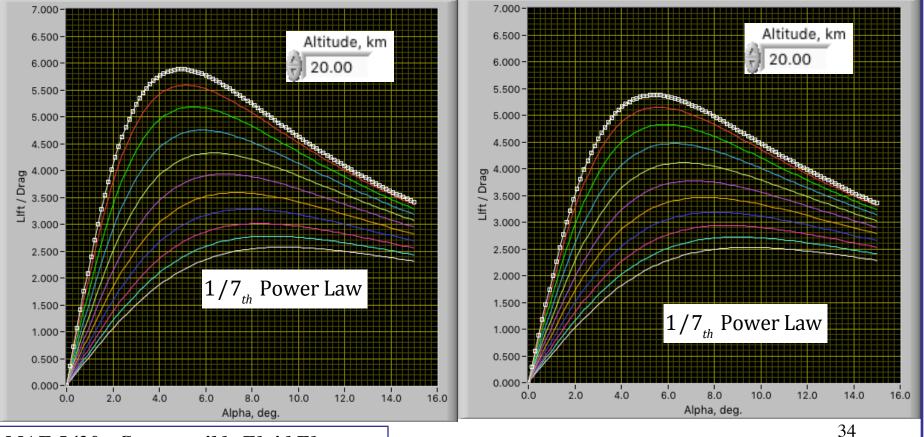

• Blow up of

Medicanteel & Flarospece Engineering

Symmetric Double-wedge Airfoil ... L/D (revisited)

Previous pages $M_{\infty} = 3.0$, Incompressible

MAE 5420 - Compressible Fluid Flow

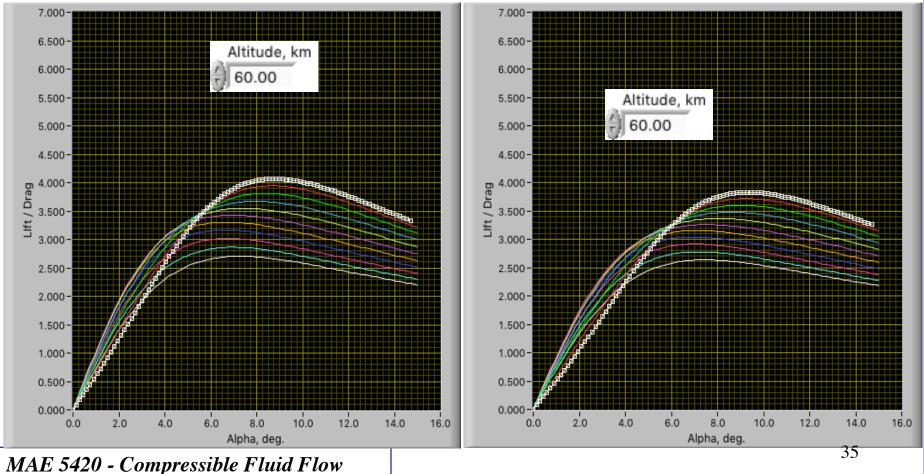

UNIVERSITY

Medical & Flarospece Engineering

Symmetric Double-wedge Airfoil ... L/D (revisited)

$M_{\infty} = 5.0$, Incompressible

 $M_{\infty} = 5.0$, Compressible


MAE 5420 - Compressible Fluid Flow

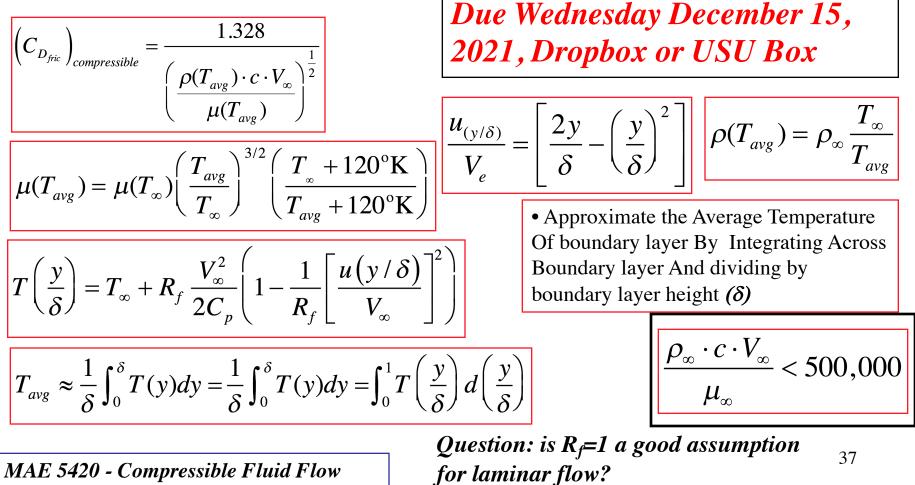
UNIVERSITY

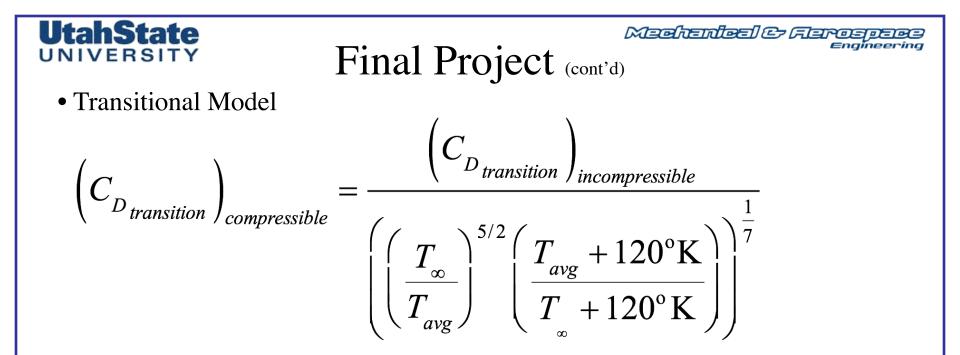
Symmetric Double-wedge Airfoil ... L/D (revisited)

$M_{\infty} = 25.0$, Incompressible

 $M_{\infty} = 25.0$, Compressible

MAE 5420 - Compressible Fluid Flow


UNIVERSITY


Final Project

• This a MAJOR Project for this class! (25% of Final Grade)

Mechanical & Farces

• Part 1 → Derive a Compressibility correction for laminar skin friction coefficient Based on parabolic velocity profile model

• For Compressible Transitional Model Use turbulent velocity profile, turbulent flow compressibility correction

$$\frac{u_{(y/\delta)}}{V_e} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$

$$500,000 \le \frac{\rho_{\infty} \cdot c \cdot V_{\infty}}{\mu_{\infty}} < 10^7$$

Medicales Ferospece Engineering

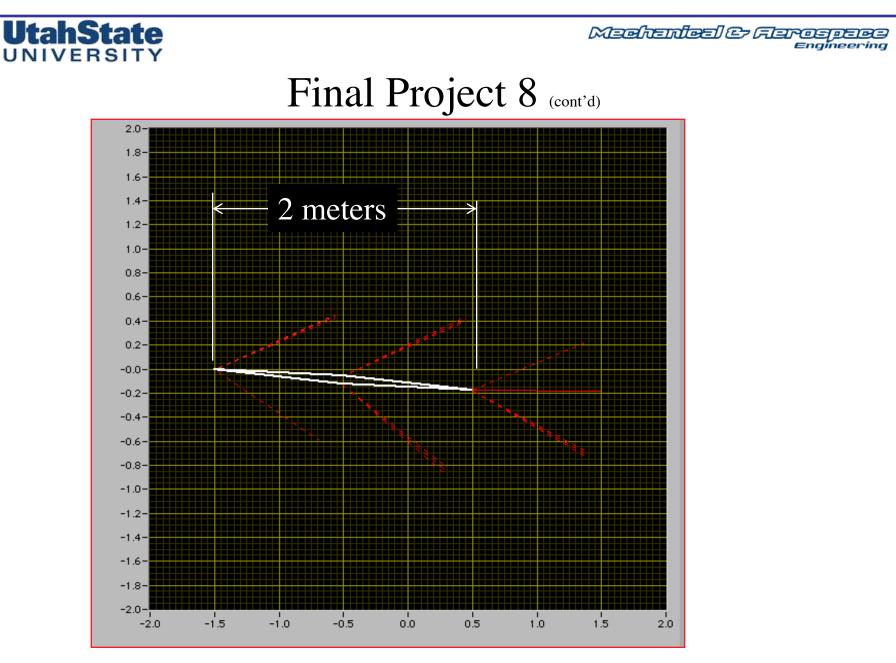
UtahState

Final Project (cont'd)

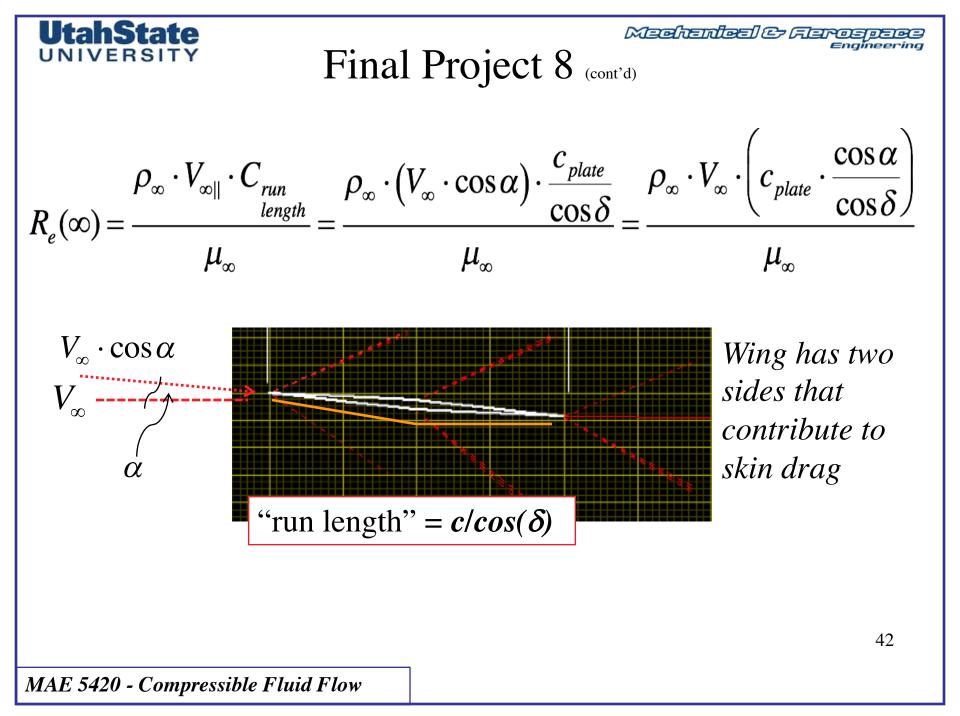
- Code up "DOUBLE-WEDGE" Aerofoil Model Supersonic flow ... (use methods of section 7.2. ...)
- Build skin friction model for accounting for Laminar / Transitional and Turbulent conditions, Adiabatic Compressibility
- Assume Unity Prandtl number .. We'll find out that this assumption is not very good for laminar flow
 - Use appropriate Compressibility *correction for laminar or or turbulent flow (for transitional flow Use Turbulent Correction)*
- Compute L/D_{max} for 2° half angle wing , 2 meter chord (plot vs alpha pick max)
 - i) Inviscid flow
 ii) Viscous flow, turbulent only, 1/7th power law
 iii) Transitional flow (laminar, transitional, and/or turbulent

 ... Mach/altitude dependent, turbulent n that varies with Reynolds number)

Final Project (cont'd)


• Assume Unity Prandtl number

• Use appropriate Compressibility correction for laminar or turbulent flow (*transitional flow* .. Use turbulent compressibility model)


• Plot as function of Mach number at 10 km, 20 km, 30 km, 40km, 50 km altitudes (*ignore exit angle at end of wing ... no effect on L/D*) ...

2 meter chord to plate ... For $(1.25 < M_{\infty} < 10)$, assume normal air properties for γ , R_g , c_p ... etc.

• Identify laminar, transitional and turbulent regimes on plot

MAE 5420 - Compressible Fluid Flow

Final Project 8 (cont'd)

• Things to consider ...

-Skin friction coefficient was normalized using the area of one slide of the plate ... for our model ... we have friction on both sides of the wing (approximated as a flat plate)

... be sure to account for this "two-sidedness" accordingly ... i.e. convert to drag first add up terms and then normalize by total planform area of wing ... b x c

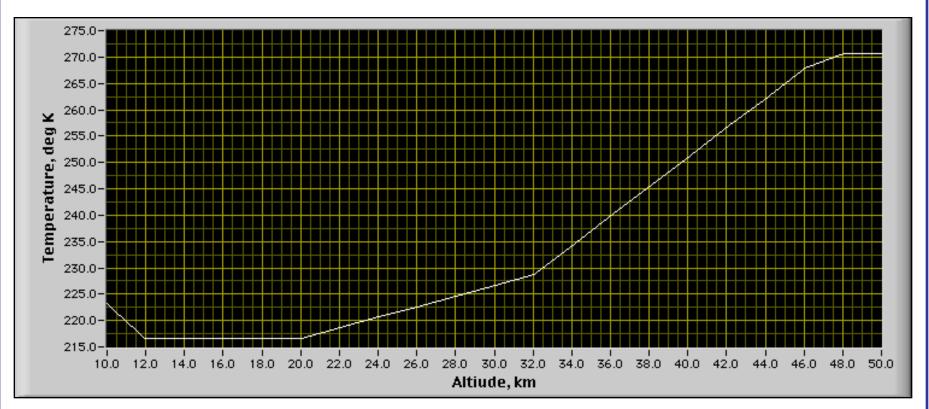
-- Approximate "*c*" in Reynolds number calculations by "run length" along plate in direction of incoming flow and flow parallel to plate axis

-- Always use freestream Reynolds number based on flow along wing center axis for inviscid B.L. Calculations

-- Assume no skin drag contribution to lift .

Include an executive summary on your "design philosophy" ... why you chose to model

this wing as you did ... what were your results, why?

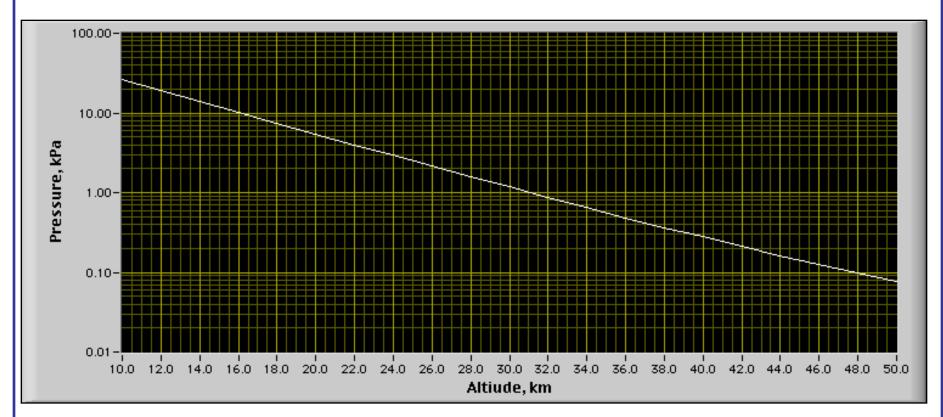

i.e. I want a detailed Report! All plots must have units, axis labels, figure numbers, and a caption

UtahState

Mediantel & Ferospece Engineering

Final Project 8 (cont'd)

See: http://www.neng.usu.edu/classes/mae/5420/Compressible_fluids/section8/StandardAtmosphere.txt



Key data, Ambient Temperature, °K VS ALTITUDE

Medical & Ferospece Engineering

Final Project 8 (cont'd)

See: http://www.neng.usu.edu/classes/mae/5420/Compressible_fluids/section8/StandardAtmosphere.txt

Key data, Ambient Pressure, kPa VS ALTITUDE

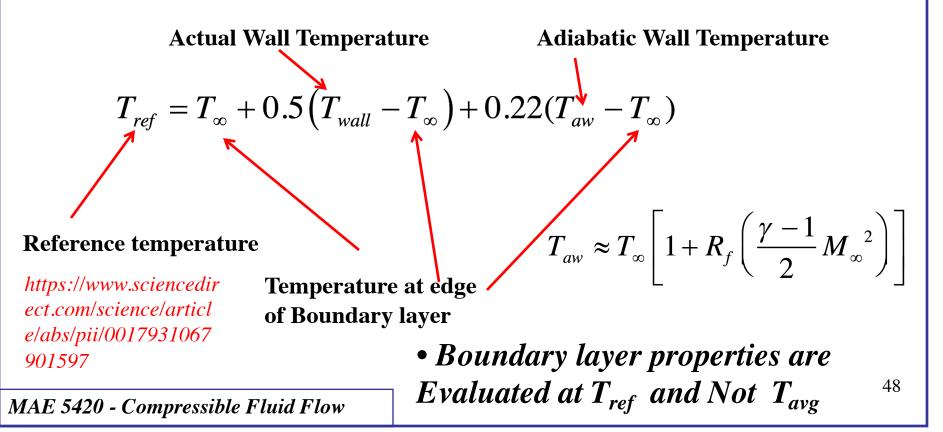
Medianical & Ferospece Engineering

Final Project 8 (cont'd)

See: http://www.neng.usu.edu/classes/mae/5420/Compressible_fluids/section8/StandardAtmosphere.txt

Key data, viscosity (μ), Nt-sec/m² VS ALTITUDE

Medicinical & Ferospece Engineering


Appendix: Non-Adiabatic wall Corrections

UNIVERSITY

Alternate Methods, non adiabatic wall

• For a non-adiabatic wall ... average temperature method is not as accurate ... "cold" wall pulls heat away from flow ... reducing boundary Layer temperatures

• Eckert's Reference temperature (semi-empirical) ... for air

Medicinies & Flarospece Engineering

Collected Algorithm (2)

• Non-adiabatic wall

$$\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{compressible} = \frac{\begin{bmatrix} C_{D_{fric}} \end{bmatrix}_{incompressible}}{\begin{bmatrix} \left(\frac{T_{\infty}}{T_{ref}} \right)^{5/2} \left(\frac{T_{ref} + C_s}{T_{\infty} + C_s} \right) \end{bmatrix}^{\frac{1}{7}}} \rightarrow C_s = 120^0 K \text{ for air}$$

$$\begin{bmatrix} T_{ref} = T_{\infty} + 0.5 \left(T_{wall} - T_{\infty} \right) + 0.22 (T_{aw} - T_{\infty}) \end{bmatrix}$$

• Valid for Turbulent Flow, Non-adiabatic wall ~ unity Prandtl number

Medicinies & Ferospece Engineering

Questions?