Official Syllabus MAE 5420 – Compressible Fluid Flow Elective

Course Description:

Application of conservation of mass, momentum and energy to the design and analysis of compressible fluid systems. 3 credits, F.

Prerequisites: MAE 3400, MAE 3420.

Textbooks: *Modern Compressible Flow with Historical Perspectives*, 3rd Edition, John D. Anderson, Jr., McGraw-Hill.

Course Objectives:

To establish the necessary physical and thermodynamic background and then develop the fundamental concepts that will allow the student to solve practical compressible flow problems.

Topics Covered:

- Thermodynamics review
- Integral forms of conservation equations for inviscid flow
- One-dimensional flow
- Normal shock relations
- Quasi-one-dimensional flow
- Oblique shocks and Prandtl-Meyer expansion
- Supersonic flow over flat plate
- 2-D Supersonic airfoil, Wave Drag
- Introduction to turbulent boundary layers in high-speed flows
- Skin friction models

Class Schedule: Three 50 minute classes; M-W-F

Course Contribution:

Mathematics and Basic Sciences: 0 credit hour(s). Engineering Sciences and Design: 3 credit hour(s). General Education Component: 0 credit hour(s).

Course Assessment Measures:

- 1. Midterm Exam (30%)
- 2. Final Exam (30%)
- 2. Homework/Programming Assignments (40%)

- Effects of skin friction on supersonic liftto-drag ratio
- Detached shockwaves
- Supersonic drag on blunt leading edge
- Flow through multiple shock systems
- Application to supersonic inlet design
- Method of characteristics as applied to nozzle design
- Introduction to differential form of conservation equations
- Supersonic conical flow
- Taylor-Maccoll solution
- Hypersonic flow
- Non-adiabatic shockwaves

Professional Component Content				
Math & Basic	Engineering	General	Engineering	
Sciences	Topics	Education	Design	
✓	\checkmark			

Relationship of course to program outcomes:

	Student Outcomes		
		Outcomes	
a)	an ability to apply knowledge of mathematics, science, and engineering,	 ✓ 	
b)	an ability to design and conduct experiments, as well as to analyze and		
	interpret data,		
c)	an ability to design a system, component, or process to meet desired needs		
	within realistic constraints such as economic, environmental, social,		
	political, ethical, health and safety, manufacturability, and sustainability		
d)	an ability to function on multi-disciplinary teams,		
e)	an ability to identify, formulate, and solve engineering problems,	✓	
f)	an understanding of professional and ethical responsibility		
g)	an ability to communicate effectively		
h)	the broad education necessary to understand the impact of engineering		
	solutions in a global, economic, environmental, and societal context		
i)	a recognition of the need for, and an ability to engage in life-long learning		
j)	a knowledge of contemporary issues,		
k)	an ability to use the techniques, skills, and modern engineering tools	 ✓ 	
	necessary for engineering practice		
1)	an ability to work professionally in both thermal and mechanical system	 ✓ 	
	areas including the design and realization of such systems.		
	*An \checkmark indicates that this course helps the students to achieve the Program Outcomes.		

Course Coordinator: Stephen A. Whitmore

Last Updated: July 13, 2013.