Rocket Science 102:

Energy Analysis, Available vs Required ΔV

- Not in Taylor

Available ΔV

Ignoring Aerodynamic Drag The "available Delta V " for a Given rocket burn/propellant load is

$$
V_{t_{b u r n}}=g_{0} \quad I_{s p} \quad \ln \left(1+P_{m f}\right)
$$

General expression for Rocket accelerating along a Horizontal path

$$
P_{m f}=\frac{m_{\text {propellant }}}{m_{\text {final }}}
$$

- Derived using simple assumptions But application is very general
-Ignored gravity and drag losses

"Gravity Losses"

Propulsive ΔV loss from acting against gravity....

$$
(\Delta V)_{\substack{\text { losravity }}}=\int_{0}^{T_{\text {burn }}} g(t) \cdot \sin \theta \cdot d t
$$

Applies for rocket accelerating along an ARBITRARY path

From previous lecture

Drag Losses

- Any Orbiting Object with a perigee altitude less than 600 km willl experience the effects of the Earths' outer atmosphere
- Resulting Drag is a non-conservative force, and as such will remove energy from the orbit
- Energy Loss will cause orbit to decay

Drag Force

... and
This decay
Also applies
To launch
trajectory

Aerodynamic Forces Acting on Rocket
-Lift - acts perpendicular to flight path

Powered

- Drag - acts along flight path
-Thrust - acts along longitudinal axis of rocket

$$
\begin{aligned}
& C_{L}=\frac{L_{\mathrm{ijt}}}{\frac{1}{2} \cdot \rho_{(h)} \cdot V^{2} A_{\text {ref }}} \rightarrow \frac{1}{2} \cdot \rho_{(h)} \cdot V^{2}=\bar{q} \rightarrow \text { "DyamicPressure" } \\
& C_{D}=\frac{D_{\text {rag }}}{\frac{1}{2} \cdot \rho_{(h)} \cdot V^{2} A_{r e f}} \\
& A_{\text {ref }} \equiv \text { reference area }
\end{aligned} \rightarrow \begin{aligned}
& \text { Typically based on planform } \\
& \text { or maximum cross section }
\end{aligned}
$$

Drag Losses

(2)

$$
\begin{aligned}
& \Delta E_{\substack{\text { non- } \\
\text { conservative }}}=\int_{\text {path }} \vec{F}_{\substack{\text { non } \\
\text {-conservative }}} \cdot d \vec{s}=\int_{\text {path }} \vec{F}_{\text {non }} \cdot \frac{d \vec{s}}{d t} \cdot d t \\
& \int_{t} \vec{F}_{\substack{\text { nonservative }}} \cdot \vec{V} \cdot d t \approx \frac{\Delta V_{\text {loss }}^{2}}{2} \cdot M \\
& \text { - Lift - acts pervative } \\
& \text {.. Cannot effect energy level of rocket }
\end{aligned}
$$

-Gravity - acts downward (conservative)
... cannot effect energy level of rocket

$$
\frac{\Delta E_{d r a g}}{M}=\frac{1}{2} \cdot\left(\Delta V_{d r a g}\right)^{2}=\int_{0}^{t} \frac{D_{r a g} \cdot V}{M} d t
$$

\rightarrow equivalent specific energy loss due to drag

$$
\rightarrow \Delta V_{d r a g}=\sqrt{2 \cdot \int_{0}^{t} \frac{D_{r a g} \cdot V}{M} d t}
$$

For constant C_{D}, M

$$
\begin{gathered}
\rightarrow \Delta V_{d r a g}=\sqrt{2 \cdot \int_{0}^{t} \frac{1}{2} \frac{C_{D} \cdot A_{r e f} \cdot \rho \cdot V^{3}}{M} d t}=\sqrt{\frac{C_{D} \cdot A_{r e f}}{M} \int_{0}^{t} \rho \cdot V^{3} d t} \\
\beta=\frac{M}{C_{D} \cdot A_{r e f}} \rightarrow \text { "Ballistic Coefficient" }
\end{gathered}
$$

Drag Losses ${ }_{(4)}$

$$
D_{\text {rag }}=C_{D} A_{\text {ref }} \frac{1}{2} \rho V^{2} \rightarrow \Delta V_{\text {drag }}=\sqrt{A_{\text {ref }} \int_{0}^{t} \frac{C_{D} \rho V^{3}}{m} d t}=\sqrt{\int_{0}^{t} \frac{\rho V^{3}}{\beta} d t}
$$

- Aerodynamic drag/mass inertial effects can be incorporated into a single parameter Ballistic Coefficient (β)
-..... measure of a projectile's ability to coast. ... $\quad \beta=M / C_{D} A_{\text {ref }}$ $\ldots M$ is the projectile's mass and $\ldots C_{D} A_{\text {ref }}$ is the drag form factor.
- At given velocity and air density drag deceleration inversely proportional to β

Low Ballistic Coefficients
Dissipate More Energy
Due to drag

Available Delta V Summary

$$
\begin{array}{|l}
\Delta V_{t_{\text {burn }}}=g_{0} \cdot I_{s p}\left[\ln \left(1+P_{m f}\right)\right]- \\
\text { "combustion } \Delta V^{\prime \prime}
\end{array}{ }^{t^{t_{\text {bun }}}} \begin{aligned}
& g_{(t)} \cdot t_{\text {burn }} \cdot \sin \theta_{(t)} d t-\sqrt{\int_{0}^{t_{\text {bun }}} \frac{\rho V^{3}}{\beta} d t} \\
& \text { "gravity loss" } \quad \text { "drag loss" }
\end{aligned}
$$

Required ΔV

- Need to accelerate from "standing still" on the ground to orbital velocity, while lifting to orbital altitude, and overcoming gravity and drag losses and insert into proper orbit inclination

MAE 5540-Propulsion Systems

- Factors that Effect

Delta V Requirements
-Required Final Velocity
-Rotational Velocity of Earth
-Required Final Altitude

- Orbit Inclination Angle

Required ΔV

What Happens at Launch?

pitch over

Phases of Launch Vehicle Ascent. During ascent a launch vehicle goes through four phases-vertical ascent, pitch over, gravity turn, and vacuum.

Gravity-turn maneuver of an ascending Delta II rocket with Messenger spacecraft on August 3, 2004.

What Happens at Launch? (2)

- Velocity and Position at Burnout Determine Final Orbit

Example 1: Orbital Velocity

Isaac Newton explains how to launch a Satellite

- Object in orbit is actually in "free-fall"
that is ... the object is literally falling around the Earth (or Planet)
- When the Centrifugal Force of the "free-fall" counters the Gravitational Force ... the object is said to have achieved Orbital Velocity

Gravitational Physics

- Now by introducing a bit of "gravitational physics" we can unify the entire mathematical analysis
"Inverse-square" law "potential" field

Isaac Newton, (1642-1727)

Gravitational Physics
 (cont'd)

- Constant G appearing in Newton's law of gravitation, known as the universal gravitational constant.
- Numerical value of G

$$
\mathrm{G}=6.672 \times 10^{-11} \frac{\mathrm{Nt}^{2} \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}=3.325 \times 10^{-11} \frac{\mathrm{lbfft}^{2}}{\mathrm{lbm}^{2}}
$$

MAE 5540-Propulsion Systems

Gravitational Potential Energy

-Gravitational potential energy equals the amount of energy released when the Big Mass M pulls the small mass m at infinity to a location r in the vicinity of a mass M

- Energy of position

$$
\mathrm{P}_{\mathrm{E}_{\text {giav }}} \equiv \mathrm{E}_{\text {released }}=\int_{\infty}^{\mathbf{r}} \mathbf{r} \cdot \mathrm{r} \cdot \mathrm{dr}=
$$

$$
\int_{\infty}^{\mathbf{r}} \frac{G M m}{r^{2}} \mathrm{dr}=-G M m\left[\frac{1}{r}-\frac{1}{\infty}\right]=-\frac{G M m}{\mathbf{r}}
$$

Orbital Velocity

Ingnoring Drag ... for a Circular orbit

$$
\overline{\mathrm{F}}_{\text {grav }}=\underset{\Downarrow}{\overline{\mathrm{F}}_{\text {centrifugal }}}
$$

$\frac{G \mathrm{Mm}}{|\mathbf{r}|^{2}}=\mathrm{m} \omega^{2}|\mathbf{r}|=\mathrm{m}\left[\frac{\mathrm{V}}{|\mathbf{r}|}\right]^{2}|\mathbf{r}|$

$$
\mathrm{V}=\sqrt{\frac{\mathrm{GM}}{|\mathbf{r}|}}
$$

MAE 5540-Propulsion Systems

Centrifugal Force

$$
m \cdot \omega^{2} \cdot r=m \cdot \frac{V^{2}}{r}
$$

Required ΔV

"Earth Delta V Boost"

- Need to accelerate from "standing still" on the ground to orbital velocity, while lifting to orbital altitude, and overcoming drag losses and insert into proper orbit inclination
- But are we really "standing still" on ground? No! The earth is rotating

- Earth "Boost" (2)

$\lambda_{0} \equiv$ geocentric latitude

$\mathrm{V}_{\text {boost }}^{(\text {earth })}=\left[\mathrm{R}_{\text {earth }}+\mathrm{h}_{0}\right]_{\text {launch }}\left[\Omega_{\text {earth }} \cos \left[\lambda_{0}\right]\right]$

- Launch Initial Conditions
$\mathrm{V}_{\text {boost }}$ acts due east (earth)
$\Omega_{\oplus}=\frac{2 \cdot \pi}{23_{\text {hrs }} \cdot 3600+60_{\text {mins }} \cdot 60+4.1_{\text {sec }}}=7.29212 \times 10^{-5} \frac{\frac{\mathrm{rad}}{\mathrm{sec}}}{}$

Earth Rotates Under the Orbit
Fixed in Inertial Space

What is the tangential velocity of the

$$
\begin{gathered}
\text { Velocity }=\text { Distance } / \text { Time } \\
V_{\text {cepuatro }}=\frac{2 \pi \cdot 6378_{\text {kn }}}{23_{\text {hss }} \cdot 3600+56_{\text {min }} \cdot 60+4.1_{\text {sec }}}=0.4651_{\text {knmsec }}
\end{gathered}
$$

Equatorial Radius

$$
R_{e}=6378 \mathrm{~km}
$$

"inertial" equatorial velocity Actually exceeds the speed Of Sound! ... why no shockwaves?

Angular Velocity of the Earth
. 1 Solar Day $=23$ hrs 56 min 4.1 seconds $=86164.1$ seconds

- $\Omega_{\text {earth }}=\frac{360^{\circ}}{86164.1 \text { seconds }} \times \frac{\pi}{180^{\circ}}=.00007292115 \frac{\mathrm{rad}}{\mathrm{Sec}}$

Earth Radius vs Geocentric Latitude

$$
\frac{\mathrm{R}_{\mathrm{earth}(\lambda)}}{\mathrm{R}_{\mathrm{eq}}}=\sqrt{\frac{1-\mathrm{e}_{\text {Earth }}^{2}}{1-\mathrm{e}_{\text {Earth }}^{2} \cos ^{2}[\lambda]}}
$$

$$
\begin{gathered}
\underset{\text { Earth }}{\mathrm{e}}=\sqrt{1-\left[\frac{\mathrm{b}}{\mathrm{a}}\right]^{2}}=\sqrt{\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}}= \\
\frac{\sqrt{[6378.13649]^{2}-6378.13649^{2}}}{[6378.13649]}=0.08181939
\end{gathered}
$$

Polar Radius: 6356.75170 km Equatorial Radius: 6378.13649 km

Tangential Velocity at various latitudes

Latitude	cos(lat)	velocity $(\mathrm{km} / \mathrm{sec})$	velocity (ft/sec)
0	1	0.4638	1521
10	0.98481	0.45675	1497.89259
20	0.93969	0.43583	1429.27248
30	0.86603	0.40166	1317.22464
40	0.76604	0.35529	1165.15360
50	0.64279	0.29812	977.67995
60	0.50000	0.23190	760.50000
70	0.34202	0.15863	520.21264
80	0.17365	0.08054	264.11888
90	0.00000	0.00000	0.00000

$$
V_{\text {"boost" }}=\left(R_{\oplus}+h_{\text {launch }}\right) \cdot \Omega_{\oplus} \cdot \cos \lambda
$$

What is the tangential velocity of the earth?
 (2)

Earth Radius

"Boost Velocity"

What is the mean radius of the earth?

What is the Earth's Mean Radius?

- Based on Volume

> Ellipsoid Volume: $\frac{4 \pi}{3} \sqrt{1-\mathrm{e}^{2}} \mathrm{R}_{\mathrm{eq}}^{3}$
> Sphere Volume: $\frac{: 4 \pi}{3} \mathrm{R}_{\text {sphere }}^{3}$
> \downarrow

$$
R_{\text {sphere }} \approx R_{\text {mean }}=\left[1-0.0818193922^{2}\right] / 66778.13649=6371.002 \mathrm{~km}
$$

- Mean Radius we have been using is for a Sphere with same volume as the Earth

$$
\begin{gathered}
\mathrm{M}_{\mathrm{E}}=\rho_{\mathrm{E}} \mathrm{~V}_{\mathrm{E}} \\
\text { "gravitational radius" }
\end{gathered}
$$

High Inclination Launch

- Physically Impossibleto Launch Directly into an orbit with a Lower inclination Angle than the Launch latitude
-Physically Possible to launch directly into any orbit with an inclination angle greater than or equal to

Example Launch Delta V Calculation

KSC Latitude $\sim 28.5^{0}$ to 200 km Orbit .. Due east launch

$$
\begin{gathered}
V_{\text {earth }}=0.4638 \cos \frac{180}{18.5}=0.4076 \mathrm{~km} / \mathrm{sec} \\
V_{\text {orbit }}=\sqrt{\frac{3.986 \cdot 10^{5} \mathrm{~km}^{3} / \mathrm{sec}^{2}}{r}}
\end{gathered} \begin{gathered}
\text { Delta } \mathrm{V}_{\text {orbit }}=\mathrm{V}_{\text {orbit }}-\mathrm{V}_{\text {earth }}= \\
7.7843-0.4076= \\
7.7377 \mathrm{~km} / \mathrm{sec}
\end{gathered}
$$

| Altitude
 (km) | Radius (km) |
:---:	:---:	:---:		Velocity	
$(\mathrm{km} / \mathrm{sec})$	$	$	200	6578	7.7843
:---:	:---:	:---:			
600	6978	7.5579			
1000	7378	7.3502			
20000	26378	3.8873			
35768	42146	3.0753			

High Inclination Launch (2)

KSC Latitude $\sim 28.5^{\circ}$ to 200 km Orbit .. Due east launch

$$
V_{\text {earth }}=0.4638 \cos \left(\frac{\pi}{180} 28.5\right)=0.4076 \mathrm{~km} / \mathrm{sec}
$$

But for a high inclination launch.. We don't get all of the "boost"
$\mathrm{V}_{\text {boost }}$ Earth Rotational Velocity
$\mathrm{V}_{\text {boost }}$ acts due east

See Derivation in Section 1 appendix

$V_{\text {"boost" }}=\left(R_{\oplus}+h_{\text {launch }}\right) \cdot \Omega_{\oplus} \cdot \cos \lambda \cdot \sin A z_{\text {launch }}=\left(R_{\oplus}+h_{\text {launch }}\right) \cdot \Omega_{\oplus} \cdot \cos i$
50° Inclination launch from $\mathrm{KSC} \sim V_{\text {boost }} \sim 0.4638 \cos \left(\frac{\pi}{180} 55\right)$
MAE 5540-Propulsion Systems $=0.2660 \mathrm{~km} / \mathrm{sec}$

How do we account for the change in potential energy due to lifting the

 vehicle 200 km ?

Accounting for Potential Energy

Potential Energy Revisited
 Gravitational Potential Energy

-Gravitational potential energy equals the amount of work energy released when a mass m at infinity is pulled by gravity to the location r in the vicinity of a mass M

- Energy of position
$\mathrm{U}_{\text {grav }} \quad \mathrm{W}_{\text {performed on } \mathrm{m}}=\int^{\mathbf{r}} \mathbf{F} \quad \mathrm{dr}=$
$\int^{\mathbf{r}} \frac{G M m}{r^{2}} \mathrm{dr}=-\operatorname{GMm}\left[\frac{1}{r}-\frac{1}{}\right]=-\frac{G M m}{r}$
m

But in High School Physics you learned That gravitational Potential energy was (per unit mass) was
Justg. \boldsymbol{h}
... how do these models reconcile?

Potential Energy Revisited (conts)

$$
R_{\oplus}=r_{e} \approx 6371_{k m}
$$

$$
P . E_{\cdot}=-\frac{\mu}{R_{\oplus}+h}
$$

$$
\left.\begin{aligned}
& \text { P.E. } ._{h}=-\frac{\mu}{R_{\oplus}+h} \\
& P . E_{\cdot}=-\frac{\mu}{R_{\oplus}}
\end{aligned}\right|^{\Delta P . E .=P . E_{._{h}}-P . E_{\cdot}}{ }^{\Delta P . E .=\left(-\frac{\mu}{R_{\oplus}+h}\right)-\left(-\frac{\mu}{R_{\oplus}}\right)}{ }^{R_{\oplus}}
$$

$$
\rightarrow \Delta P . E .=\left(-\frac{\mu \cdot R_{\oplus}}{\left(R_{\oplus}+h\right) \cdot R_{\oplus}}\right)-\left(-\frac{\mu \cdot\left(\left(R_{\oplus}+h\right)\right)}{R_{\oplus} \cdot\left(R_{\oplus}+h\right)}\right)=\left[\frac{\mu}{R_{\oplus} \cdot\left(R_{\oplus}+h\right)}\right] \cdot h
$$

Potential Energy Revisited (conts)

Check acceleration of gravity

$$
\begin{gathered}
F_{g r a v}=\frac{m M G}{r^{2}} \bar{i}_{r} \rightarrow\left|\frac{F_{g r a v}}{m}\right|=g(r)=\frac{\mu}{r^{2}} \\
F_{g r a v}=\frac{M \cdot m \cdot H}{r^{2}} \cdot \vec{i}_{r} \rightarrow g(r) \equiv \frac{F_{g r a v}}{m}=\frac{M \cdot G}{r^{2}} \cdot \vec{i}_{r}=\frac{\mu}{r^{2}} \cdot \vec{i}_{r} \\
\bar{g}=\frac{1}{h} \int_{R_{\oplus}}^{R_{\oplus}+h} g(r) \cdot d r=\frac{1}{h} \int_{R_{\oplus}}^{R_{\oplus}+h} \frac{\mu}{r^{2}} \cdot d r=-\left.\frac{1}{h} \frac{\mu}{r}\right|_{R_{\oplus}+h} ^{R_{\oplus}}=-\frac{1}{h}\left[\frac{\mu}{\left(R_{\oplus}+h\right)}-\frac{\mu}{\left(R_{\oplus}\right)}\right]=\frac{\mu}{\left(R_{\oplus}+h\right) \cdot R_{\oplus}}
\end{gathered}
$$

$$
\left.\begin{array}{l}
\rightarrow \Delta P \cdot E \cdot=\left[\frac{\mu}{R_{\oplus} \cdot\left(R_{\oplus}+h\right)}\right] \cdot h \\
\rightarrow \bar{g}=\frac{\mu}{\left(R_{\oplus}+h\right) \cdot R_{\oplus}}
\end{array}\right] \rightarrow \Delta P \cdot E_{\cdot h}=\bar{g} \cdot h
$$

Just like you learned in $12^{\text {th }}$ grade physics!

Delta V

"gravity"

Potential
Potential
Energy at
Energy at
Orbital
Earth's Surface
$\left.\begin{array}{l}\begin{array}{l}\text { equivalent kinetic } \\ \text { energy required } \\ \text { to overcome gravity }\end{array}\end{array} \frac{\Delta \mathrm{V}^{2}}{2}\right]_{\text {gravity }}$
$=\frac{\mu}{r_{e}}-\frac{\mu}{r_{e}+h}=$

$$
\frac{\mu\left(r_{e}+h\right)-\mu r_{e}}{r_{e}\left(r_{e}+h\right)}=\frac{\mu \mathrm{h}}{\mathrm{r}_{\mathrm{e}}\left(\mathrm{r}_{\mathrm{e}}+\mathrm{h}!\right.}
$$

$r_{e}=$ launch altitude

$$
\Delta \mathrm{V}_{\text {gravity }}=\sqrt{2 \frac{\mu \mathrm{~h}}{\mathrm{r}_{\mathrm{e}}\left(\mathrm{r}_{\mathrm{e}}+\mathrm{h}\right)}}
$$

200 km orbit from KSC $\ldots \mathrm{r}_{\mathrm{e}} \sim 6371 \mathrm{~km}$
$\Delta \mathrm{V}_{\text {gravity }}$

$$
\left(\frac{2\left(3.9860044 \times 10^{5}\right) 200}{6371(6371+200)}\right)^{0.5}=1.9516 \mathrm{~km} / \mathrm{sec}
$$

Total Delta V Required (contd)

- Root Sum Square of Required Kinetic Energy (Horizontal) + Potential Energy (Vertical)

$$
\begin{aligned}
& \left(\Delta V_{\text {required }}\right)_{\text {total }}=\sqrt{\left(V_{\text {orbiall }}-V_{\text {boorst }}\right)^{2}+\Delta V_{\text {gravity }}{ }^{2}}= \\
& \sqrt{\left(V_{\text {orbital }}-V_{\substack{\text { boosth" } \\
\text { earrh }}}\right)^{2}+\left(\frac{2 \cdot \mu \cdot h_{\text {orbit }}}{R_{\oplus} \cdot\left(R_{\oplus}+h_{\text {orbit }}\right)}\right)} \\
& V_{\text {"boost" }}=\left(R_{\oplus}+h_{\text {launch }}\right) \cdot \Omega_{\oplus} \cdot \cos i
\end{aligned}
$$

Energy Summary

"Available ΔV "... Path Dependent

Propulsive Energy gravityloss energy dissipation

$$
\Delta V_{t_{\text {burn }}}=g_{0} \cdot I_{s p} \cdot \ln \left(1+P_{m f}\right)-\oint_{t_{\text {bum }}} g \cdot t \cdot \sin \left(\theta_{(t)}\right) \cdot d t-\sqrt{\oint_{t_{\text {burn }}} \frac{1}{\beta_{(t)}} \cdot \rho_{(t)} \cdot V_{(t)}^{3} \cdot d t}
$$

$1+P_{m f}=1+\frac{M_{\text {propellant }}}{M_{d r y}}=\frac{M_{d r y}}{M_{d r y}}+\frac{M_{\text {propellant }}}{M_{d r y}}=\frac{M_{\text {initial }}}{M_{\text {final }}}$

$$
g(t)=\frac{\mu}{R_{\oplus}+h(t)} \quad \beta_{(t)}=\frac{m_{(t)}}{C_{D(t)} \cdot A_{r e f}}
$$

"Required ΔV "... Path Independent

$$
\Delta V_{\text {required }}=\sqrt{\left(V_{\text {orbit }}-V_{\text {boost }}\right)^{2}+\Delta V_{\text {gruity }}^{2}}
$$

$$
\rightarrow \begin{gathered}
V_{\text {orbit }} \approx \sqrt{\frac{\mu}{R_{\oplus}+h}} \\
V_{\text {boost }}=\left(R_{\oplus}+h_{\text {launch }}\right) \cdot \Omega_{\oplus} \cdot \cos \left(i_{\text {orbit }}\right) \\
\Delta P . E .=\frac{\Delta V_{\text {gravity }}^{2}}{2}=\frac{\mu \cdot h}{\left[R_{\oplus}+h(t)\right] R_{\oplus}}=\bar{g} \cdot h
\end{gathered}
$$

Homework 1

- Space Shuttle has the following mass fraction characteristics Weight (lb)
Gross lift-off 4,500,000
External Tank (full) 1,655,600
External Tank (Inert) 66,000 SRBS (2) each at launch . . . 1,292,000 SRB inert weight, each 192,000

- 1) Calculate the actual propellant mass fraction as the shuttle sits on the pad

$$
\begin{gathered}
P_{m f}=\frac{M_{\text {propellant }}}{M_{{ }^{\text {ddry" }}}+M_{\text {payload }}} \\
P_{m f}=\frac{M_{\text {initial }}}{M_{\text {final }}}-1
\end{gathered}
$$

- Assume that Shuttle is being launched on a Mission to the International Space Station (ISS)
- ISS orbit altitude is approximately 375 km above Mean sea level (MSL), assume that Shuttle Pad 41A altitude approximately Sea level, Latitude is 28.5 deg. , ISS Orbit Inclination is 51.6 deg.
- Assume that the Earth is a perfect sphere with a radius of 6371 km

- Calculate

$$
\mu_{\oplus}=M_{\oplus} \cdot G=3.9860044 \times 10^{5} \frac{\mathrm{kn}^{3}}{\mathrm{sec}^{2}}
$$

1) The required Orbital Velocity
2) The "Boost Velocity" of the Earth at the Pad 41A launch site (along direction of inclination)
3) Equivalent "Delta V" required to lift
the shuttle to altitude
4) Total "Delta V" required to reach the ISS orbit

- The 2 SRB's each burn for approximately 123 seconds and produce 2,650,000 lbf thrust at sea level
- The 3 SSME engines each burn for ~ 509.5 seconds and each produces $454,000 \mathrm{lbf}$ thrust at sea level
- Each of the SSME's consume $1040 \mathrm{lbm} / \mathrm{sec}$ of propellant

6) Calculate the average specific impulses of the SRB's, the SSME's, and the Effective specific impulse of the Shuttle Launch System as a whole during the First 123 seconds of flight (ignore altitude effects)

Hint: $\quad \begin{aligned} & I_{s p}=\frac{\int_{0} F_{\text {troust }} \cdot d t}{\mathrm{~T}_{0} \iint_{\text {bur }}} \dot{m}_{\text {propellant }} \cdot d t\end{aligned}=\frac{(\mathrm{I} \text { mpulse })_{\text {toala }}}{\mathrm{g}_{0} M_{\text {propellant }}}$
$\int_{0}^{T_{\text {bur }}} F_{\text {thrust }} \cdot d t$
$\mathrm{g}_{0} \int_{0}^{\text {wann }} \dot{m}_{\text {propellant }} \cdot d t \quad \mathrm{~g}_{0} M_{\text {propellant }}$

Homework 1 (coute)

7) Based on the calculated "Delta V" requirements for the mission, what would be the required propellant mass fraction For the space shuttle to reach orbit in a single stage assuming the mean launch specific impulse?
-- base this calculation on the mean I_{sp} for the system during the first 123 seconds after launch
8) How does the shuttle manage to reach orbit??

Homework 1 (contd)

.... Next evaluate estimate launch conditions by breaking calculation into two "stages".. That is
i) Stage 1 ... first 123 seconds ... SRB's and SSME's burning ii) Stage 2 ... after SRB's jettisoned .. Only SSME's burning
"stage 1"

\# ofstages
$\Delta V_{\text {total }}=\Delta V_{\text {stage1 }}+\Delta V_{\text {stage2 }}+\Delta V_{\text {stage3 }} \ldots=\sum_{i=1} \Delta V_{\text {stage }_{-} i}$
MAE 5540-Propulsion Systems

i) Stage 1 ... first 123 seconds ... SRB's and SSME's burning
-- Assume shuttle flys ~"vertically" during Stage 1 flight. ...
"stage 1 "
Flight is vertical
9) Calculate "Available Delta V" for "stage 1"Based On Mean $I_{s p}$, and $\boldsymbol{P}_{m f}$ (ignore altitude effects)
-- Include "gravity losses" and assume an 8% drag loss in the available propulsive "Delta V" ... assume $g(t) \sim g_{0}=9.8067 \mathrm{~m} / \mathrm{sec}^{2}$

$$
(\Delta V)_{\text {available }}=g_{0} \cdot I_{s p} \cdot \ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)-(\Delta V)_{\text {graraity }}-(\Delta V)_{\text {drags }}
$$

$\longrightarrow(\Delta V)_{\text {drag }} \approx 0.10 \times g_{0} \cdot I_{s p} \cdot \ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)$

Homework 1 (ameme)

... Break Calculation into two "stages".. That is
ii) Stage 2 ... flight time from 123 seconds to SSME burnout
-- Assume shuttle flys ~"horizontally" during Stage 2 flight. ...
"stage 2 " flight is
horizontal

-- 10) Calculate "Available Delta V" Based On SSME $I_{s p}$, and remaining $P_{m f}$ after the SRB's Have been Jettisoned
-- Assume no drag losses for stage 2 burn
-- 11) Compute total available delta V.. Compare to mission requirements

