Rocket Science 103:

How High will My Rocket Go?

Newton's Laws as Applied to "Rocket Science"

... its not just a job ... its an adventure

Example Energy Calculation for Suborbital Launch

(Ignore Drag)

$$
\Delta V_{\text {tum }}=g_{0} \cdot I_{s p}\left[\ln \left(1+P_{m f}\right)\right]-g_{0} \cdot \sin \theta_{\text {lamese }} \cdot t_{\text {burn }}
$$

UtahState
 UNIVERSITY

Example Energy Calculation for Suborbital Launch (2)

Assume $\theta_{\text {launch }}=$ constant, $V_{0}=0 \rightarrow$ at time $t:$

$$
\begin{aligned}
& V(t)=\left(g_{0} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t\right) \\
\rightarrow & \frac{d h}{d t}=V(t) \cdot \sin \theta_{\text {launch }}=\left(g_{0} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t\right) \cdot \sin \theta_{\text {launch }}
\end{aligned}
$$

- Altitude@Burnout?

$$
\begin{aligned}
& \rightarrow h_{\text {burnout }}=\left[\int_{0}^{t_{\text {bunaut }}} V(t) \cdot \sin \theta_{\text {launch }} \cdot d t\right]= \\
& \int_{0}^{t_{\text {bumpout }}}\left(g_{0} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t\right) \cdot \sin \theta_{\text {launch }} \cdot d t
\end{aligned}
$$

UtahState
 UNIVERSITY

Example Energy Calculation for Suborbital Launch

- After a Lot of Arithmetic (see appendix at end of section for derivation)

$$
\left.\left.\begin{array}{|l}
h_{\text {burroutu }}=g_{0} \cdot \sin \theta_{\text {launcch }} \cdot t_{\text {buur }}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t_{\text {buun }}\right. \\
\text { out }
\end{array}\right\}\right)
$$

$$
\rightarrow \begin{aligned}
& P_{m f}=\frac{M_{\text {propelant }}}{M_{\text {burnout }}} \\
& t_{\text {bur }}=\frac{g_{0} \cdot I_{s p} \cdot M_{\text {propellamt }}}{F_{\text {thrust }}}
\end{aligned}
$$

Example Energy Calculation for Suborbital Launch

In the absence of dissipative (drag, etc) forces ... total mechanical energy of rocket remains covstart fotewing motor burnout
"Apogee Point"

TtahState
 UNIVERSITY

Example Energy Calculation for Suborbital Launch

Equating Total Energy at Burnout and Apogee

$$
\left(\frac{E_{\text {mech }}}{M_{\text {final }}}\right)_{\text {burrout }}=\left(\frac{E_{\text {mech }}}{M_{\text {final }}}\right)_{\text {apogee }} \frac{\left(V_{\text {burnout }}\right)^{2}}{2 \cdot g_{0}}+h_{\text {burrout }}=\left(\frac{\left(V_{\text {apogee }}\right)^{2}}{2 \cdot g_{0}}+h_{\text {apogee }}\right) \approx h_{\text {apogee }}
$$

Solving for $\mathbf{h}_{\text {apogee }}$

$$
\begin{aligned}
& h_{\text {apogee }} \approx \frac{E_{\text {mech }}}{M_{\text {final }} \cdot g_{0}}=\frac{\left(V_{\text {buurnout }}\right)^{2}}{2 \cdot g_{0}}+h_{\text {burnout }}= \\
& \left.\frac{\left(g_{0} \cdot I_{s p} \cdot \ln \left(1+P_{m f}\right)-g_{0} \cdot \sin \theta_{\text {launcc }} \cdot t_{\text {burn }}\right)^{\text {out }}}{}\right)^{2}+g_{0} \cdot \sin \theta_{\text {launch }} \cdot t_{\text {burn }}^{\text {out }} \mid \\
& 2 \cdot g_{0} \\
& \left.\frac{1}{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right\}= \\
& \frac{1}{2} g_{0}\left(I_{s p} \cdot \ln \left(1+P_{m f}\right)-\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2}+g_{0} \cdot \sin \theta_{\text {launch }} \cdot t_{\substack{\text { bur } \\
\text { out }}}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t_{\substack{\text { bur } \\
\text { out }}}\right\}
\end{aligned}
$$

Example Energy Calculation for Suborbital Launch

How High Will my Rocket Go?

$$
\begin{aligned}
& h_{\text {burrout }}=g_{0} \cdot \sin \theta_{\text {launch }} \cdot t_{\substack{\text { burn } \\
\text { out }}}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t_{\substack{\text { burn } \\
\text { out }}}\right\} \\
& V_{\text {burnout }}=g_{0} \cdot I_{s p} \cdot \ln \left(1+P_{m f}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t_{\text {burn }}^{\text {out }} \\
& h_{\text {apogee }} \approx \frac{1}{2} g_{0}\left(I_{s p} \cdot \ln \left(1+P_{m f}\right)-\sin \theta_{\text {launch }} \cdot t_{\substack{\text { burn } \\
\text { out }}}\right)^{2}+g_{0} \cdot \sin \theta_{\text {launch }} \cdot \cdot_{\substack{\text { burn } \\
\text { out }}}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot \cdot_{\text {burn }}^{\text {out }}\right\} \\
& V_{\text {apogee }} \approx 0
\end{aligned}
$$

Example Calculation

2009 USLI Rocket AMW L777 Motor

"Dry" vehicle mass : 11.2451 kg , Propellant mass: 1.7623 kg Propellant $I_{\text {sp }}: 181.49 \mathrm{sec}$, Mean Motor Thrust: 774.475 Newtons

$$
\begin{aligned}
& P_{m f}=\frac{m_{\text {propellant }}}{M_{\text {final }}}=\frac{1.7623}{11.2451} \quad=0.156717 \\
& t_{\text {burn }}=\frac{g_{0} I_{\text {sp }} M_{\text {propelamt }}}{F_{\text {thrust }}}=\frac{9.8067 \cdot 181.49 \cdot 1.7623}{774.475}=4.04993 \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& P_{m f}=\frac{m_{\text {propellant }}}{M_{\text {final }}}=0.156717 \quad t_{\text {burn }}=\frac{g_{0} I_{s p} M_{\text {propellamt }}}{F_{\text {thrust }}}=4.04993 \mathrm{sec} \\
& h_{t_{\text {burn }}}=g_{0} \cdot t_{\text {burn }}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{t_{\text {burn }}}{2}\right\}= \\
& 9.8067 \cdot 4.04933\left(181.49\left(1-\frac{\ln (1+0.156717)}{0.156717}\right)-\frac{4.04993}{2}\right)=431.5 \text { meters } \\
& V_{t_{\text {burn }}}=g_{0} \cdot I_{s p}\left[\ln \left(1+P_{m f}\right)\right]-g_{0} \cdot t_{\text {burn }}= \\
& 9.8067 \cdot 181.49(\ln (1+0.156717))-9.8067 \cdot 4.004993=219.5 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Example Calculation (3)

Calculate Apogee Altitude (above ground level)

$$
\begin{aligned}
& h_{\text {apogee }}=\frac{E_{\text {mech }}}{M_{\text {final }} g_{0}}=\frac{\left(V_{\text {burnout }}\right)^{2}}{2 g_{0}}+h_{\text {burnout }}= \\
& \frac{219.5^{2}}{2 \cdot 9.8067}+431.5=2888 \text { meters }
\end{aligned}
$$

 Univensiteompare to Simulation Results

We will build this simulation later

$$
\begin{array}{|l|}
h_{\text {apogee }}=2888.71 \mathrm{~m} \\
V_{\text {burnout }}=219.34 \mathrm{~m} / \mathrm{sec}
\end{array}
$$

Altitude

Analytical Solution
=> 2888 meters
$=219.5 \mathrm{~m} / \mathrm{sec}$

Better than 0.056\%

Compare to Simulation Results

$$
\begin{array}{|l|}
h_{\text {apogee }}=2888.71 \mathrm{~m} \\
V_{\text {burnout }}
\end{array}=219.34 \mathrm{~m} / \mathrm{sec},
$$

Ignoring drag for now!

POTENTIAL ALTITUDE, agl

Ignoring Drag During Burn @ time t :
$h_{(t)}=g_{0} \cdot \sin \theta_{\text {launch }} \cdot t \cdot\left\{I_{s p} \cdot\left(1-\frac{\ln \left(\frac{m_{\text {initial }}}{m_{\text {initial }}-\dot{m} \cdot t}\right)}{\frac{\dot{m} \cdot t}{m_{\text {initial }}-\dot{m} \cdot t}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t\right\}$
$V_{(t)}=g_{0} \cdot I_{s p} \cdot \ln \left(\frac{m_{\text {initial }}}{m_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t$
$h_{\text {potential }_{(t)}} \approx \frac{E}{g_{0}\left(m_{\text {initial }}-\dot{m} \cdot t\right)}=\frac{V^{2}(t)}{2 \cdot g_{0}}+h_{(t)}$

UtahState UNIVERSITY

Compare to Fight Data

Compare to Fight Data (2)

Why the difference? Drag!

$$
\begin{aligned}
& \frac{\left(V_{\text {apogee }}\right)^{2}}{2}=\frac{E_{\text {mech }}}{M_{\text {final }}} \quad V_{\text {apogese }}=\sqrt{\frac{2 E_{\text {mech }}}{M_{\text {final }}}}=\sqrt{2 g_{0} h_{\text {pootenial }}} \\
& \frac{\left(V_{\text {apogee }}\right)_{\text {calc }}\left(V_{\text {apogee }}\right)_{\text {flight }}}{\left(V_{\text {apogge }}\right)_{\text {calc }}+\left(V_{\text {appggee }}\right)_{\text {flight }}} \cdot 100_{\%}= \\
& 2
\end{aligned}
$$

$(2888.71 \cdot 2 \cdot 9.8067)^{0.5}-(2500 \cdot 2 \cdot 9.8067)^{0.5}$
$(2888.71 \cdot 2 \cdot 9.8067)^{0.5}+(2500 \cdot 2 \cdot 9.8067)^{0.5}=7.22 \%$
2
$\sim 7.2 \%$ error in delivered apogee ΔV

How Drag Losses Effect Peak Altitude

$$
\begin{aligned}
& \text { Conservation of Energy: } \\
& \text { Potential }+ \text { Kinetic Energy }=\text { Constant }- \text { Dissipated Energy } \\
& g \cdot h_{\text {apogee }}+\frac{V_{\text {apogee }}^{2}}{2}=h_{\text {burnout }}+\frac{V^{2}{ }_{\text {burnout }}}{2}-\int_{t_{\text {burnout }}}^{t_{\text {apogee }}} \frac{\rho \cdot V^{3}}{\beta} d t \\
& \rightarrow h_{\text {apogee }}=h_{\text {burnout }}+\left(\frac{V_{\text {burnout }}^{2}}{2 \cdot g}-\frac{V_{\text {apogee }}^{2}}{2 \cdot g}\right)-\frac{1}{g} \int_{t_{\text {buurnout }}}^{t_{\text {apogee }}} \frac{\rho \cdot V^{3}}{\beta} d t
\end{aligned}
$$

How Drag Losses Effect Peak Altitude (2)
$\Delta V_{\text {drag }}=\sqrt{2 \int_{0}^{t} \frac{D_{\text {rag }} V}{M} d t}=\sqrt{2 \int_{0}^{t} \frac{C_{D} A_{\text {ref }} \frac{1}{2} \rho V^{2} \cdot V}{M} d t}=\sqrt{\int_{0}^{t} \frac{\rho \cdot V^{3}}{\beta} d t}$
$\Delta h_{\text {drag }}=\frac{\Delta V_{\text {drag }}{ }^{2}}{2 \cdot g_{0}}=\frac{1}{2 \cdot g_{0} \cdot \beta}\left[\int_{0}^{t} \rho \cdot V^{3} d t\right]$

Check units!
$: \frac{1}{\frac{m}{\sec ^{2}} \frac{\mathrm{~kg}}{m^{2}}} \frac{\mathrm{~kg}}{m^{3}} \frac{m}{\mathrm{sec}}$
${ }^{3} \sec =\frac{\sec ^{2} m^{5}}{m k g} \frac{k g}{m^{3}} \frac{1}{\sec ^{2}}=m$
"Rule of thumb" ~ drag loss is about 5$10^{\%}$ of delivered ΔV from motor

Drag Coefficient is Configuration Dependent

Figure 3-4. Drag Coefficient vs Mach Number-HO-mm Rocket

Figure 3-5. Drag Coefficient vs Mach Number-762-mm Rocket

But "Rules of Thumb" Apply

$$
D_{\text {rag }}=C_{D} A_{\text {ref }} \frac{1}{2} \rho V^{2} \rightarrow \Delta V_{d r a g}=\sqrt{A_{r e f} \int_{0}^{t} \frac{C_{D} \rho V^{3}}{m} d t}=\sqrt{\int_{0}^{t} \frac{\rho V^{3}}{\beta} d t}
$$

Depending
On thrust to-weight Off of the pad drag losses can be significant During motor burn

As much as $12-15 \%$ of Potential altitude
... path dependent!
Must simulate trajectory

UtahState
 UNIVERSITY

STS-114 Trajectory Example (contd)

Aero Data Base Drag Coefficient

Total Vehicle Drag

Vehicle Mass

Acceleration of Gravity

Shuttle Effective Specific Impulse

Calculated Accumulated Delta V's

$$
\begin{aligned}
& \rightarrow h_{\text {burnout }}=\left[\int_{0}^{t_{\text {bumpout }}} V(t) \cdot \sin \theta_{\text {launch }} \cdot d t\right] \cdot \sin \theta_{\text {launch }} \\
& \int_{0}^{t_{\text {burpout }}}\left(g_{0} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launch }} \cdot t\right) \cdot \sin \theta_{\text {launch }} \cdot d t
\end{aligned}
$$

Simplifying \rightarrow
$h_{\text {burnout }}=\sin \theta_{\text {launch }} \cdot \int_{0}^{t_{\text {burnaut }}}\left(g_{0} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0} \cdot \sin \theta_{\text {launcc }} \cdot t\right) \cdot d t=$
$\left.\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p} \int_{0}^{t_{\text {burpout }}}\left[\ln \left(M_{\text {initial }}\right)-\ln \left(M_{\text {initial }}-\dot{m} \cdot t\right)\right] \cdot d t-\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {turn }}\right)^{\text {out }}}{}\right)^{2}=$
$\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p} \cdot\left\{\ln \left(M_{\text {initial }}\right) \cdot t_{\substack{\text { burn } \\ \text { out }}}-\left[\int_{0}^{t_{\text {bunpout }}}\left[\ln \left(M_{\text {initial }}-\dot{m} \cdot t\right)\right] \cdot d t\right]\right\}-\frac{g_{0} \cdot\left(\sin \theta_{\left.\text {launch } \cdot t_{\text {burn }}\right)^{2}}^{2} \text { out }^{2}\right.}{2}$

UtahState

UNivensitr Appendix: Integration of the Burnout Out Altitude Equation
(2)

Evaluating the Integral \rightarrow

$$
\begin{aligned}
& \left.h_{\text {bunnout }}=-\frac{g_{0} \cdot\left(\sin \theta_{\text {launcch }} \cdot t_{\text {burn }}^{\text {out }}\right.}{}\right)^{2}+\left(\frac{2 \cdot \sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{\text {sp }}}{2 \cdot \dot{m}}\right) \cdot\left(M_{\text {initial }} \cdot \ln \left(\frac{M_{\text {initial }}-\dot{m} \cdot t_{\text {burn }}}{M_{\text {initial }}}\right)+\dot{m} \cdot t_{\text {burn }} \cdot\left(1+\ln \left(\frac{M_{\text {intital }}}{M_{\text {initial }}-\dot{m} \cdot t_{\text {burn }}} \text { out }\right) ~\right)\right)= \\
& -\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2}}{2}+\left(\frac{\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{\text {sp }}}{\dot{m}}\right) \cdot\left(M_{\text {initial }} \cdot \ln \left(\frac{M_{\text {initial }}-\dot{m} \cdot t_{\text {burn }}}{\text { outr }^{M_{\text {initial }}}}\right)+\dot{m} \cdot t_{\text {burn }} \cdot\left(1+\ln \left(\frac{M_{\text {intital }}}{M_{\text {initial }}-\dot{m} \cdot t_{\text {burr }}} \text { out }\right) ~\right)\right) \\
& h_{\text {burnout }}=-\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2}}{2}+\left(\frac{\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p}}{\dot{m}}\right) \cdot\left(M_{\text {initial }} \cdot \ln \left(\frac{M_{\text {final }}}{M_{\text {initial }}}\right)+\dot{m} \cdot t_{\text {burn }} \cdot\left(1+\ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)\right)\right)
\end{aligned}
$$

UtahState

UNivensitr Appendix: Integration of the Burnout Out Altitude Equation
Rearranging

$$
\begin{aligned}
& \left.h_{\text {burnout }}=-\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}^{\text {out }}\right.}{}\right)^{2}+\left(\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{\text {sp }}\right) \cdot\left(-\frac{M_{\text {initial }}}{\dot{m}} \cdot \ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)+t_{\substack{\text { burr } \\
\text { out }}} \cdot\left(1+\ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)\right)\right)= \\
& -\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2}}{2}+\left(\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p}\right) \cdot\left(\ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)\left(t_{t_{\text {burn }}}-\frac{M_{\text {initial }}}{\dot{m}}\right)+t_{\text {burn }}\right)= \\
& -\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2}}{2}+\left(\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p}\right) \cdot t_{\substack{\text { burn } \\
\text { out }}}\left(\ln \left(1+P_{m f}\right)\left(1-\frac{M_{\text {initial }}}{M_{\text {propellant }}}\right)+1\right)
\end{aligned}
$$

Appendix: Integration of the Burnout Out Altitude Equation

$$
\begin{aligned}
& \text { Substituting } \rightarrow \frac{M_{\text {initial }}}{M_{\text {final }}}=1+P_{m f} \text { and } 1-\frac{M_{\text {initial }}}{\dot{m} \cdot t_{\substack{\text { burn } \\
\text { out }}}=1-\frac{M_{\text {initial }}}{M_{\text {propellant }}}=-\frac{1}{P_{m f}}} \begin{array}{l}
\left.h_{\text {burnout }}=-\frac{g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}^{\text {out }}\right.}{}\right)^{2} \\
2 \\
-\left(\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p}\right) \cdot t_{\text {burn }}\left(\ln \left(1+P_{m f}\right)\left(1-\frac{M_{\text {initial }}}{M_{\text {propellant }}}\right)+1\right)= \\
g_{0} \cdot\left(\sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right)^{2} \\
2
\end{array}+\left(\sin \theta_{\text {launch }} \cdot g_{0} \cdot I_{s p}\right) \cdot t_{\text {burn }}\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)
\end{aligned}
$$

Rearranging

$$
h_{\text {burnout }}=g_{0} \cdot \sin \theta_{\text {launch }} \cdot t_{\substack{\text { burn } \\ \text { out }}}\left\{I_{s p} \cdot\left(1-\frac{\ln \left(1+P_{m f}\right)}{P_{m f}}\right)-\frac{1}{2} \sin \theta_{\text {launch }} \cdot t_{\text {burn }}\right\}
$$

