Appendix I to Lecture 2.2: Deriving Kepler's Equation from Swept Area Integral

UtahState Relationship of Eccentric Anomaly to the Elliptic Area Integral

- Eccentric anomaly, E, is related to area swept by geometry
- Assuming a starting point is at perigee, the sweep area at some true anomaly, v is given by the integral

$$A_{[v-0]} = \left| \int_{0}^{v} \frac{1}{2} r^{2} d\theta = \frac{1}{2} \right|_{0}^{v} \left[a \frac{1 - e^{2}}{[1 + e \cos(\theta)]}^{2} d\theta = \frac{1}{2} \left[\frac{1 - e^{2}}{[1 + e \cos(\theta)]} \right]_{0}^{2} d\theta = \frac{1}{2} \left[\frac{1 - e^{2}}{[1 + e \cos(\theta)]} \right]_{0}^{2} d\theta$$

$$\frac{1}{2} \frac{a^2 \sqrt{1-e^2}}{1+e\cos\left(v\right)} \left\{ -2 \tanh^{-1} \left[\frac{-\left(1-e\right) \tan\left(\frac{v}{2}\right)}{j \sqrt{1-e^2}} \right] \left[1+e\cos\left(v\right) \right] + ej \sqrt{1-e^2} \sin\left(v\right) \right\}$$

Mechenteel & Fleroe Engineer

UtahStateRelationship of Eccentric Anomaly to the Elliptic Area Integral

• The integral can be simplified considerably by subsituting in the expression for *Eccentric anomaly*

$$\tan\left[\frac{\nu}{2}\right] = \sqrt{\frac{1+e}{1-e}} \tan\left[\frac{E}{2}\right]$$

When this substitution is performed

$$\frac{-(1-e)\tan\left(\frac{v}{2}\right)}{j\sqrt{1-e^2}} = \frac{-(1-e)\sqrt{\frac{1+e}{1-e}}\tan\left[\frac{E}{2}\right]}{j\sqrt{1-e^2}} = \frac{j\sqrt{1-e}\sqrt{1+e}}{\sqrt{1-e^2}} = j\tan\left[\frac{E}{2}\right]}{\sqrt{1-e^2}}$$

Machendeel & Flarospece Engineering

UtahStateRelationship of Eccentric UNIVERSITER Anomaly to the Elliptic Area Integral (cont'd)

•When this result is substituted into the area integral the area integral reduces to

Maguenne

$$\frac{1}{2} \frac{a^2 j \sqrt{1-e^2}}{1+e \cos(\nu)} \Big\{ -2 \tanh^{-1} \Big[j \tan\left[\frac{E}{2}\right] \Big] \Big[1+e \cos(\nu) \Big] + e j \sqrt{1-e^2} \sin(\nu) \Big] \Big\}$$
Buuuut...

A -[v-0]

$$\frac{a^{2}j\sqrt{1-e^{2}}}{1+e\cos(v)} = j\frac{a}{\sqrt{1-e^{2}}}\frac{a[1-e^{2}]}{1+e\cos(v)} = j\frac{a}{\sqrt{1-e^{2}}}r$$

Engineei

UtahStateRelationship of Eccentric UNIVERSITERATE Anomaly to the Elliptic Area Integral

(cont'd)

•When this equation is substituted result is A = [v -0]

$$-\frac{1}{2}a\left\{\frac{2j}{\sqrt{1-e^2}} r \tanh^{-1}\left[j\tan\left[\frac{E}{2}\right]\right]\left[1+e\cos\left(v\right)\right] + re\sin\left(v\right)\right\} = \\ -\frac{1}{2}a\left\{\frac{2j}{\sqrt{1-e^2}}a\left(1-e^2\right)\tanh^{-1}\left[j\tan\left[\frac{E}{2}\right]\right] + re\sin\left(v\right)\right\} = \\ -\frac{1}{2}a\left\{2j\ a\sqrt{1-e^2}\ \tanh^{-1}\left[j\tan\left[\frac{E}{2}\right]\right] + re\sin\left(v\right)\right\}$$

UtahStateRelationship of Eccentric NIVERSITYRelationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

 $A_{[v-0]} = -\frac{1}{2}a\left\{2j \ a\sqrt{1-e^2} \ tanh^{1}\left[\frac{j}{j} \ tan\left[\frac{E}{2}\right]\right] + r \ e \ sin (v)\right\}$

But from Trigonometric Identity

UtahStateRelationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

$$\tanh^{-1}\left[j\tan\left[\frac{E}{2}\right]\right] = j\left[\frac{E}{2}\right]$$
$$A_{[v-0]} = -\frac{1}{2}a\left\{2j\ a\sqrt{1-e^2}\ \tanh^{-1}\left[j\tan\left[\frac{E}{2}\right]\right] + r\ e\ sin\left(v\right)\right\}$$

And the Area Integral reduces to

$$A_{[v-0]} = -\frac{1}{2}a\left\{2j a\sqrt{1-e^2} j\left[\frac{E}{2}\right] + re\sin(v)\right\} = \frac{1}{2}a\left\{a\sqrt{1-e^2} E - re\sin(v)\right\}$$

UtahStateRelationship of Eccentric Anomaly to the Elliptic Area Integral

• From Cartesian forms for Circle and Ellipse

Mediandred & Flarosperio Engineerin

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral (cont'd)

 Evaluating the geometric projections

$$\frac{y_s}{y_c} = \frac{b}{a} = \frac{r \sin(v)}{a \sin(E)}$$

Rearranging gives

$$r \sin(v) = b \sin(E)$$

Anomaly: True and Eccentric

Mechendeel & Flarospece Engineering

UtahState Relationship of Eccentric UNIVERSITY Anomaly to Elliptic Area Integral

Substituting into the area integral

UtahState Relationship of Eccentric UNIVERSITY Anomaly to Elliptic Area Integral

•Simplifying the expression gives $A_{[v-0]} = \frac{1}{2}a\left\{a\sqrt{1-e^2} \quad E = eb\sin(E)\right\} = \frac{1}{2}a^2\left\{\sqrt{1-e^2} \quad E-e\frac{b}{a}\sin(E)\right\} = \frac{1}{2}a^2\sqrt{1-e^2}\left\{a-e\sin(E)\right\}$ $\frac{b}{a} = \sqrt{1-e^2}$

Anomaly: True and Eccentric

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral (cont'd)

•But from kepler's second law ... total area of Ellipse is:

$$A_{\substack{\text{ellipse}\\\text{total}}} = \int_{0}^{2\pi} \left[\frac{1}{2} r(v)^{2} dv \right] = \boxed{a^{2} \pi \sqrt{1 - e^{2}}}$$
$$A_{\lfloor v - 0 \rfloor} = \frac{1}{2} a^{2} \sqrt{1 - e^{2}} \langle E - e \sin(E) \rangle = \frac{A_{\lfloor v - 0 \rfloor}}{2\pi} a^{2} \pi \sqrt{1 - e^{2}} \langle E - e \sin(E) \rangle = \frac{A_{\lfloor v - 0 \rfloor}}{2\pi} \langle E - e \sin(E) \rangle$$

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral

(concluded)

Solving for the Area ratio gives:

$$\frac{A}{A}_{\substack{[v-0]\\ \text{ellipse}\\ \text{total}}} = \frac{1}{2 \pi} \ ; \ E = e \sin(E) \ ;$$

Applying Kepler's second law

$$\frac{A_{v - 0}}{A} = \frac{t - t_0}{T}$$

Defining the Mean Anomaly as

$$M_{t-0} = 2 \pi \left[\frac{t - t_0}{T} \right]$$

$$2 \pi \frac{A_{[v-0]}}{A_{\text{ellipse}}} = 2 \pi \left[\frac{t - t_0}{T} \right] = M_{t-0} = \left\{ E - e \sin(E) \right\}$$

UtahStateFINALLY ... (WHEW!) KEPLER'S EQUATION

$$2\pi \left[\frac{t-t_0}{T}\right] = M_{t-0} = \left\{ E - e \sin(E) \right\}$$

 \cdot Where t_0 is the time of perapsis passage and

$$\tan\left[\frac{v}{2}\right] = \sqrt{\frac{1+e}{1-e}} \tan\left[\frac{E}{2}\right]$$

