Appendix I to Lecture 2.2: Deriving Kepler's Equation from Swept Area Integral

UtahState

 university Relationship of Eccentric Anomaly to the Elliptic Area Integral\bullet Eccentric anomaly, E, is related to area swept by geometry

- Assuming a starting point is at perigee, the sweep area at some true anomaly, v is given by the integral

$$
A_{[v-0]}=\int_{0}^{v} \frac{1}{2} \mathrm{r}^{2} \mathrm{~d} \theta=\frac{1}{2} \int_{0}^{v}\left[\frac{1-\mathrm{e}^{2}}{[1+\mathrm{e} \cos (\theta)]}\right]^{2} d \theta=
$$

$$
\frac{1}{2} \frac{a^{2} \sqrt{1-e^{2}}}{1+\mathrm{e} \cos (v))}\left\{-2 \tanh ^{-1}\left[\frac{-(1-\mathrm{e}) \tan \left(\frac{v_{i}}{2}\right)}{j \sqrt{1-\mathrm{e}^{2}}}\right][1+\mathrm{e} \cos (v]]+\mathrm{ej} \sqrt{1-\mathrm{e}^{2}} \sin (v)\right\}
$$

UtahStater Relationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

- The integral can be simplified considerably by subsituting in the expression for Eccentric anomaly

$$
\tan \left[\frac{\mathrm{v}}{2}\right]=\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \left[\frac{\mathrm{E}}{2}\right]
$$

- When this substitution is performed

$$
\frac{-(1-e) \tan \left(\frac{v}{2}\right)}{j \sqrt{1-e^{2}}}=\frac{-(1-e) \sqrt{\frac{1+e}{1-e}} \tan \left[\frac{E}{2}\right]}{j \sqrt{1-e^{2}}}=\frac{j \sqrt{1-e} \sqrt{1+e} \tan \left[\frac{E}{2}\right]}{\sqrt{1-e^{2}}}=j \tan \left[\frac{E}{2}\right]
$$

UtahStater Relationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

-When this result is substituted into the area integral the area integral reduces to

$$
\begin{gathered}
A_{[v-0]}= \\
\frac{1}{2} \frac{a^{2} j \sqrt{1-\mathrm{e}^{2}}}{1+e \cos (v)},-2 \tanh ^{-1}\left[j \tan \left[\frac{E}{2}\right]\right][1+e \cos (v)]+e \mathrm{j} \sqrt{1-\mathrm{e}^{2}} \sin (v)_{i}^{i}
\end{gathered}
$$

- Buuuut...

$$
\frac{a^{2} j \sqrt{1-e^{2}}}{1+e \cos (v)}=j \frac{a}{\sqrt{1-e^{2}}} \frac{a\left[1-e^{2}\right]}{1+e \cos (v)}=j \frac{a}{\sqrt{1-e^{2}}} r
$$

UtahStater Relationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

-When this equation is substituted result is

$$
A_{\left[\begin{array}{ll}
v & -0
\end{array}\right]}=
$$

$$
\begin{aligned}
& -\frac{1}{2} \mathrm{a}\left\{\frac{2 \mathrm{j}}{\sqrt{1-\mathrm{e}^{2}}} \mathrm{r} \tanh ^{-1}\left[j \tan \left[\frac{E}{2}\right]\right][1+\mathrm{e} \cos (v)]+r e \sin (v)\right\}= \\
& -\frac{1}{2} \mathrm{a}\left\{\frac{2 \mathrm{j}}{\sqrt{1-\mathrm{e}^{2}}} \mathrm{a}\left(1-\mathrm{e}^{2}\right) \tanh ^{-1}\left[\mathrm{j} \tan \left[\frac{\mathrm{E}}{2}\right]\right]+\mathrm{re} \sin (\mathrm{v})\right\}= \\
& -\frac{1}{2} \mathrm{a}\left\{2 \mathrm{j} \text { a } \sqrt{1-\mathrm{e}^{2}} \tanh ^{-1}\left[\mathrm{j} \tan \left[\frac{\mathrm{E}}{2}\right]\right]+\mathrm{re} \sin (\mathrm{v})\right\}
\end{aligned}
$$

UtahStatelationship of Eccentric UNIVERSITY

 Anomaly to the Elliptic Area Integral (cont'd)$$
A_{[v-0]}=-\frac{1}{2} a\left\{2 j \text { a } \sqrt[1]{1-e^{2}} \tanh ^{-1}\left[j \tan \left[\frac{\mathrm{E}}{2}\right]\right]+r e \sin (v)\right\}
$$

-But from Trigonometric Identity

$$
\begin{aligned}
& j \tan \left[\frac{E}{2}\right]=j \frac{\sin \left[\frac{E}{2}\right]}{\cos \left[\frac{E}{2}\right]}=j \frac{e^{j\left[\frac{E}{2}\right]}-e^{-j\left[\frac{E}{2}\right]}}{2 j} \frac{e^{j\left[\frac{E}{2}\right]}+e^{-j\left[\frac{E}{2}\right]}}{2}=\frac{\frac{e^{j\left[\frac{E}{2}\right]}-e^{-j\left[\frac{E}{2}\right]}}{2}}{j\left[\frac{E}{2}\right]+e^{-j\left[\frac{E}{2}\right]}} \underset{2}{2}=\frac{\sinh \left[j \frac{E}{2}\right]}{\cosh \left[j \frac{E}{2}\right]}=\tanh \left[j \frac{E}{2}\right] \\
& \tanh \left[j \tan \left[\frac{[}{2}\right]\right]=j=\left[\frac{[}{2}\right]
\end{aligned}
$$

Emgirmeerirgy

UtahStatelationship of Eccentric UNIVERSITY

 Anomaly to the Elliptic Area Integral (cont'd)$$
\begin{gathered}
\tanh ^{-1}\left[j \tan \left[\frac{\mathrm{E}}{2}\right]\right]=\mathrm{j}\left[\frac{\mathrm{E}}{2}\right] \\
\mathrm{A}_{[\mathrm{v}-0]}=-\frac{1}{2} \mathrm{a}\left\{2 \mathrm{j} \text { a } \sqrt{1-\mathrm{e}^{2}} \tanh ^{-1}\left[\mathrm{j} \tan \left[\frac{\mathrm{E}}{2}\right]\right]+\mathrm{resin}(\mathrm{v})\right\}
\end{gathered}
$$

- And the Area Integral reduces to

$$
\begin{gathered}
\mathrm{A}_{[\mathrm{v}-\mathrm{0}}=-\frac{1}{2} \mathrm{a}\left\{2 \mathrm{ja} \sqrt{1-\mathrm{e}^{2}} \mathrm{j}\left[\frac{\mathrm{E}}{2}\right]+\mathrm{resin}(\mathrm{v})\right\}= \\
\frac{1}{2} \mathrm{a}\left\{\mathrm{a} \sqrt{1-e^{2}} \mathrm{E}-\mathrm{resin}(\mathrm{v})\right\}
\end{gathered}
$$

UtahStater Relationship of Eccentric Anomaly to the Elliptic Area Integral (cont'd)

Anomaly: True and Eccentric

- From Cartesian forms for Circle and Ellipse

$$
\begin{aligned}
& \text { Ellipse: }\left[\frac{x_{s}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}_{\mathrm{s}}^{2}}{\mathrm{~b}^{2}}=1\right] \Rightarrow \\
& {\left[\frac{\mathrm{x}_{\mathrm{s}}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}_{\mathrm{c}}^{2}}{\mathrm{a}^{2}}=1\right]: \text { Circle }} \\
& \frac{\mathrm{y}_{\mathrm{s}}^{2}}{\mathrm{~b}^{2}}=\frac{\mathrm{y}_{\mathrm{c}}^{2}}{\mathrm{a}^{2}} \Rightarrow \frac{\mathrm{y}_{\mathrm{s}}}{\mathrm{y}_{\mathrm{c}}}=\frac{\mathrm{b}}{\mathrm{a}}
\end{aligned}
$$

Engimeering

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral (cont'd)

Anomaly: True and Eccentric

- Evaluating the geometric projections

$$
\frac{y_{s}}{y_{c}}=\frac{b}{a}=\frac{r \sin (v)}{a \sin (E)}
$$

- Rearranging gives
$r \sin (v)=b \sin (E)$

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral (cont'd)

- Substituting into the area integral

Anomaly: True and Eccentric

$$
\begin{gathered}
\mathrm{r} \sin (v)=\mathrm{b} \sin (\mathrm{E}) \\
\mathrm{A}_{[v-0]}=\frac{1}{2} \mathrm{a}\left\{\mathrm{a} \sqrt{1-\mathrm{e}^{2}} \mathrm{E}-\mathrm{re} \sin (v)\right\}= \\
\frac{1}{2} \mathrm{a}\left\{a \sqrt{1-\mathrm{e}^{2}} \mathrm{E}-\mathrm{e} \mathrm{~b} \sin (\mathrm{E})\right\}
\end{gathered}
$$

UtahState Relationship of Eccentric Anomaly to Elliptic Area Integral (cont'd)

$$
\begin{aligned}
& \text {-Simplifying the expression gives } \\
& \left.A_{[v-0]}=\frac{1}{2} a_{i}^{i} a \sqrt{1-e^{2}} E-e b \sin (E)\right)^{\prime}= \\
& \frac{1}{2} a^{i}\left\{\sqrt{1-\mathrm{e}^{2}} \text { E-e } \frac{b}{a} \sin (E)=\frac{1}{2} a^{2} \sqrt{1-\mathrm{e}^{2}}(E-e \sin (E)\right. \\
& \frac{\mathrm{b}}{\mathrm{a}}=\sqrt{1-\mathrm{e}^{2}}
\end{aligned}
$$

Anomaly: True and Eccentric

UtahState Relationship of Eccentric UNIVERSITY

 Anomaly to Elliptic Area Integral (cont'd)-But from kepler's second law ... total area of Ellipse is:

$$
\begin{aligned}
& {\underset{\substack{\text { ellipse } \\
\text { total }}}{ }=\int_{0}^{2 \pi}\left[\frac{1}{2} \mathrm{r}(v)^{2} \mathrm{~d} v\right]=\mathrm{a}^{2} \pi \sqrt{1}}_{\underset{[\mathrm{v}-\mathrm{0}]}{ }=\frac{1}{2} \mathrm{a}^{2} \sqrt{1-\mathrm{e}^{2}} \mathrm{E}-\mathrm{e} \sin (\mathrm{E}){ }_{j}=}^{\mathrm{A}=} \\
& \text { A ellipse } \\
& \frac{1}{2 \pi} \mathrm{a}^{2} \pi \sqrt{1-\mathrm{e}^{2}} \sum_{1} \mathrm{E}-\mathrm{e} \sin (\mathrm{E})_{j}^{\prime}=\frac{\text { total }}{2 \pi}\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}
\end{aligned}
$$

Eryghrerrirgy

UtahState Relationship of Eccentric UNIVERSITY

 Anomaly to Elliptic Area Integral (concluded)- Solving for the Area ratio gives:

$$
\frac{A_{[v-0]}^{A_{\substack{\text { ellipse } \\ \text { total }}}}=\frac{1}{2 \pi}: E-e \sin (E) ;}{\substack{ \\A^{2}}}
$$

- Applying Kepler's second law

$$
\begin{array}{|c|}
\hline \mathrm{A}_{\boldsymbol{V}-0} \\
\left.\mathrm{~A}_{\substack{\text { ellipse } \\
\text { total }}}=\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{~T}} \right\rvert\, \\
\hline
\end{array}
$$

- Defining the Mean Anomaly as

$$
\mathrm{M}_{\mathrm{t}-\mathrm{o}}=2 \pi\left[\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{~T}}\right]
$$

$$
2 \pi \frac{\mathrm{~A}_{[\mathrm{v}-0]}}{\mathrm{A}}=2 \pi\left[\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{~A}}\right]=\mathrm{M}_{\mathrm{t}-0}=\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}
$$

UtahState UNIVERSITYALLY ... (WHEW!) KEPLER'S EQUATION

$$
2 \pi\left[\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{~T}}\right]=\mathrm{M}_{\mathrm{t}-0}=\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}
$$

-where..... t_{0} is the time of perapsis passage and

$$
\tan \left[\frac{\mathrm{v}}{2}\right]=\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \left[\frac{\mathrm{E}}{2}\right]
$$

