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 Appendix II to Lecture 2.2	



Solving and Applying
Kepler's Equation

Starting Condtions

Week3
Vallado Chapter 2

Sections 2.1, 2.2, 2.3
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 Numerical Solution of ���
Kepler's Equation	
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Anatomy of the Solver Algorithm	
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 Starting Value	



M=1.818	
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 Starting Value (cont’d)	





 

AA4362	

 Starting Value (cont’d)	
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 Starting Value (cont’d)	


• Highly Eccentric Orbits
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Starting Value (cont’d)	
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Starting Value (concluded)	



• Since we are solving Kepler’s Equation  for each and every	


Time point in our propagation of the orbit … convergence 	


speed becomes critically important	



• Clearly, since convergence near the	


Perigee of an eccentric orbit can be a bit	


Of a problem …	



Its clear that we need …. 	



• a better way to start each iteration	



• Next time 	


   …“Startup Algorithms”	
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Figure 5: Sample Orbit Calculation using Kepler's Equation
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 OK … so we need a better���
startup algorithm	



• So where do we start?… with a really Simple 	


ad-hoc solution ….. 	



• When M ~ 0, we simply “kick it off zero” by adding 	


or subtracting  … e (Vallado Algorithm)	
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 Derivation of Vallado���
Startup Algorithm*	



• Regroup Kepler’s Equation and Expand in a Taylor’s series	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• But	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	



• and the Taylor’s series reduces to	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• But	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	



• Solving for the derivative	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• and the Taylor’s series further reduces to	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	



• Truncating the series after first order	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• and now the “Vallado approximation”	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• “Vallado approximation”	



• Startup is most accurate for M ~ 1-e  -> for highly eccentric	


Orbits … this value for M also happens to be near Perigee	



• For low eccentricity orbits … we’ve already seen that	


It really doesn’t matter where you start	



• But how about intermediate eccentricity orbits, I.e. e=0.5	


  M -> 1-e = 0.5 radians ~28.65° ... ισ τηισ γοοδ ενουγη?	
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 Linear Interpolation as a Startup ���
Algorithm	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• Exploit the fact that Kepler’s equation is explicit in the	


“forward direction”	
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 Linear Interpolation as a Startup ���
Algorithm (cont’d)	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• Generate 3-D 	


Space of 	


{M, e, E} that	


Satisfy Kepler’s	


Equation	



• Use 2-D 	


Interpolation	


Of {M, e, E} 	


To Generate	


Starting Guess	





 

AA4362	

 Linear Interpolation as a Startup ���
Algorithm (cont’d)	



* Proof is Courtesy of Brian M. Moore	


CPT, US Army, Naval Postgraduate School	


Space Systems Engineering, bmmoore@nps.navy.mil	



• Using a 	


“quaternary”	


Search pattern	


Interpolation 	


is fast	



• But stored	


Data base is 	


Rather large	



• Mesh Mesh	


Density fixed	


By maximum 	


Eccentricity of	


Orbits to be analyzed	
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OK … can we develop another���

startup algorithm?	



• So where do we start?… with the Fourier 	


series solution of Kepler’s Equation …..*	



*Dörrie, H. ``The Kepler Equation.'' 100 Great Problems of 	


Elementary Mathematics: Their History and Solutions. 	



New York: Dover, pp. 330-334, 1965.	
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 Fourier Series Solution	



• Very inefficient way to solve Kepler’s equation	
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 Fourier Series Solution (cont’d)	


• Buuuuttt … if we expand out the terms in the series	
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Fourier Series Solution (cont’d)	



• Substituting in for the Ji’s and collecting terms:	
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 Near the Troublesome point���
at perigee	



• at perigee … sin(µ M)  ~ µ Μ, { µ = 0, 1, 2, ...}	
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Fourier Series Method ���

Near Perigee	



• Higher Order Method … but still simple	


to implement	
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Taylor Series Method	



Fourth-order accurate	



At	
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Taylor Series Method (cont’d)	
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Taylor Series Method (cont’d)	



• "Resolvent Cubic" Equation has Closed-form Solution

     .... two complex roots (complex root 1)
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Taylor Series Method (cont’d)	
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Taylor Series Method (cont’d)	



Startup Method 3:	
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 OK .... How Good ���
are these Startup Values	
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 Startup Accuracy Metric	
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 Comparison of Start-up Values	



S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.01

1 2 3 4 5 6

-0.006

-0.004

-0.002

0.002

0.004

(Method 3)	



(Method 1)	
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 Comparison of Start-up Values ���
(cont’d)	



S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.1

1 2 3 4 5 6

-0.06

-0.04

-0.02

0.02

0.04

(Method 3)	



(Method 1)	
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 Comparison of Start-up Values ���
(cont’d)	



S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.5

1 2 3 4 5 6

-0.4

-0.3

-0.2

-0.1

0.1

0.2 (Method 1)	



(Method 3)	
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 Comparison of Start-up Values ���
(cont’d)	



S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.90

1 2 3 4 5 6

-1

-0.5

0.5 (Method 1)	



(Method 3)	
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 Iteration Plots (e=0.01)

100

#of points

0.01

eccentricity

25

Max # of Iterations

0.0000100

% error required

2.0 4.0 6.00.0 8.0

1

0

2

Vallado	





 

AA4362	

 Iteration Plots (e=0.1)
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 Iteration Plots (e=0.5)
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 Iteration Plots (e=0.9)
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 Conclusions?	



• For Most Conditions the Simple "Vallado" Startup
   Method gives Superior connvergence
    ... simplicity of the algorithm clearly justified its use

• Near the perigee, the 4th order (Taylor's series) startup
   gives better convergence

• Where's the "push" point ... it appears that for all
   eccentricities the Taylor's serie startup method
   offers convergence advantages for

                         ν < 0.25radians (~15° )

• Gives a convergence aid for solutions near perigee
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 Soooo... its looks like	




