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UNIVERSITYAppendix IT to Lecture 2.2

Solving and Applying
Kepler's Equation
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uuNtla\"Eitse¥$ Numerical Solution of

Kepler's Equation
* OK, So How we Extract Numerical Solutions of

Kepler's Revengel!
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Anatomy of the Solver Algorithm

True Mean Anomaly

Ttevation index \ Current estimate of mean anomaly
/ \«. M - [E”- ¢ sin (EY) |

Current estimate Steepest descent

\ . 1 -ecos(EY

Refined estimate
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UtahState Starting Value
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c o e Low Eccentricity Orbits

4.0

E 2.0
?_‘,-LT_J;’ 1.0 '
0.0 ‘ Basically, you can start .

from anywhere
and get fast convergence

| |
7/2 7

oO-

Eccentric Anomaly, E (radlans)
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UuNtla\!‘EsFatsal'*e Stal'ting Vallle (cont’d)
e Highly Eccentric Orbits

G.0

5.0 —
€ = 095

4.0

3.0 -
()

_ -

- -ﬂ --

© — 7 gives
. E = T gives
I very rapid convergence I

-I When E not near Zero I
JI:I/2 JIIZ /2 2|u:

35t

Eccentric Anomaly, E (radians)
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7.0

6.0

5.0

f(E.e.M)

Stal'ting Vallle (cont’d)
e Highly Eccentric Orbits

(0
g )

.
can be ill-tempered (slow)

When E 1s near Zero

1t/2 X 35t/2 2%

Eccentric Anomaly, E (radians)
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UuNtla\"EthSal"*s Stal'ting Vallle (cont’d)

e Highly Eccentric Orbits

- Why is convergence "ill-tempered" (slow) near perigee?

(+1) M - [EY- e sin [EY]

0 4 ..
E/E 1 - e cos(EY

0.0051583 -|.11 - 09581n(11|]
(]+1
£ A 1-0.95cos|(.11]

-.0005523 _
0.11 + 05574 =.10009154
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Stal'ting Vallle (cont’d)

e Highly Eccentric Orbits

Why is convergence "ill-tempered"”
(slow) near perigee?

- Normalized Change convergence criterion

oL | =2 e = v
6D L R0 ' o

only a 9.4% change

... even though we are only 0.00009154 radians (.0052°) off
in our estimate
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Stal'ting Vallle (concluded)

* Since we are solving Kepler’s Equation for each and every
Time point in our propagation of the orbit ... convergence

Speed becomes Critically important Figure 5: Sample Orbit Calculation using Kepler's Equation
. | __Orbital Path
* Clearly, since convergence near the oo T
Perigee of an eccentric orbit can be a bit o
Of a problem ... | |
050 4 _f%}f”ite
y/ o
Its clear that we need .... e
y Earth center
. . -0.50 -
e a better way to start each iteration
* Next time T
$e “Startup Algorlthms” _2.00—2_.50 50 -1o0 -0s0 000 0S50 100 180
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UtahState OK ... so we need a better

UNIVERSITY

startup algorithm

e So where do we start?... with a really Simple
ad-hoc solution .....

* When M ~ 0, we simply “kick it off zero” by adding
or subtracting ... e (Vallado Algorithm)

Startup
Method 1

M=E-e sin|(E]

S

J
' O0<M=<m Eg=M+e¢e |

\
{

<M< 2m Eg=M-e
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UtahState Derivation of Vallado
UNIVERSITY
Startup Algorithm*

* Regroup Kepler’s Equation and Expand in a Taylor’s series

M=E- esin[E|]= E(M)=M + e sin|E]

E(M) = E(O+ M {a M K;i“ E] } + O
10

e But

v

when M=0 = E(0)= esin[E(0)]= E0)=0

* Proof is Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil
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UtahState Derivation of Vallado
UNIVERSITY .
Startup Algorithm:conca

 and the Taylor’s series reduces to

EM) = {1 +€ cos[E] } + O(MZ)

e But
8[M+esin[E]] JdE aE_ aE
M aM M l +¢ cos[E]
JE 1 e cos[E] 0 E e cos[E]

oM 1-e¢ cos[E] [1 e cos[E]]

* Proof is Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil

IMechanicallGdraenospace)

Engineering




UtahState Derivation of Vallado
Startup Algorithm:conca

UNIVERSITY

e Solving for the derivative

JE ] _
oM - e cos[E]

1+ecos[E]%:l+

e cos[E]
[1- e cos[E]]

 and the Taylor’s series further reduces to

E= M{l+

E= M[1+

1

e cos[E]
e cos[E]]]lo - On)

- O

* Proof 1s Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil
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UtahState Derivation of Vallado
UNIVERSITY .
Startup Algorithm:conca

e Truncating the series after first order .
O<M<mn =>[11§/Ie]>0
E=M +e [ M } =

[1-¢] <M< 00 = M __g
i [1-e] |

e and now the “Vallado approximation”

/ . _
1| 0sM<n =E=M-+e

I- = -
el |7 2eM<09 >EBE=M-e

* Proof 1s Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School

Space Systems Engineering, bmmoore @nps.navy.mil E L? e os | =12
Engineering




UtahState Derivation of Vallado
UNIVERSITY .
Startup Algorithm:conca

=~ |

e “Vallado approximation” | M

[1-¢]

e Startup is most accurate for M ~ 1-e -> for highly eccentric
Orbits ... this value for M also happens to be near Perigee

* For low eccentricity orbits ... we’ve already seen that
It really doesn’t matter where you start

e But how about intermediate eccentricity orbits, I.e. €=0.5
M -> 1-e = 0.5 radians ~28.65° ... Lo TNLO Y000 evouvyn?

* Proof is Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil @ (== QSpa [ oA =
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L?Ntﬂ"eitsalﬁnear Interpolation as a Startup

Algorithm

Mt-O:{Et'e Sin(Et)}

e Exploit the fact that Kepler’s equation is explicit in the
“forward direction”

* Proof 1s Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil
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L?Ntﬂ"eitsalﬁnear Interpolation as a Startup

Algorithm (cont’d)

e Generate 3-D
Space of

{M, e, E} that -

Satisfy Kepler’s = .|

Equation iz:h

e Use 2-D

Interpolation

Of {M, e, E}

To Generate

Starting Guess

* Proof 1s Courtesy of Brian M. Moore
CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil @ H [ =4 /™~ aspae I =
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e Using a

1S

“quaternary”

Search pattern
Interpolation

is fast
e But stored
Data base 1s
Rather large

* Mesh Mesh
Density fixed

By maximum
Eccentricity of
Orbits to be analyzed

300

Eccentric Anomoly

near Interpolation as a St
Algorithm (cont’d)

- e
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e e
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0.4

Eccentricity

artup

* Proof 1s Courtesy of Brian M. Moore

CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore @nps.navy.mil
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NIV
OK ... can we develop another

startup algorithm?

* So where do we start?... with the Fourier
series solution of Kepler’s Equation .....*

*Dorrie, H. " The Kepler Equation.”" 100 Great Problems of

Elementary Mathematics: Their History and Solutions.
New York: Dover, pp. 330-334, 1965.
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L‘,'Ntﬂ, E§t8a|$$ Fourier Series Solution

M=E-e sin(E)
U

E=M+5 | 2J,me)sin(nM)|
n=1

00 :
-1 - N

— n €\n+2j — .:| Bessel Function
Jl’l(n e) _]:ZO J' (H+J) ( 2 ) | of the First Kind |

 Very inefficient way to solve Kepler’s equation
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UNIVERSITY Fourier Series Solution conta

e Buuuuttt ... 1if we expand out the terms in the series

E ~M + 2 J,(e) sin(M) ]+ [ Jo(2¢) sin(2 M) ]+

{ 2 7,3e) sin(3 M) } ¥

~__ e e
hi(e) 16 384"

] ~e2 et | eb
(=5 6 tag?

T.(e) =26 _8le>  729¢€’ |
3(€) 16

Engineering
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Fourier Series Solution onta)

* Substituting in for the J.’s and collecting terms:

~ (&, e
E M+(e 2 192)sm(M)+

(622 e6+ )sin(2M)+

3e3 27e5 ) -
(8 128+ sin (3 M) +
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b :
L‘:'Nt?v Eits?ﬁNear the Troublesome point

at perigee

o at perigee ... sin(uM) ~uM,{u=0,1,2, ..}

EOzM+(e-68—3+...)M+

(622-664+...)2M+

3e3 2765 ) _
(8 128+...3M+...

Mil+e+e?+e3+..]
INtechvanicalladrenospace;
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Fourier Series Method
Near Perigee

Startup

Eo=M|1l+e+e? +e3]
Method 2

e Higher Order Method ... but still simple
to implement
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* Kepler's Equation

Taylor Series Method

E-¢e sin(E) -M=0

 Expand "Sine" term in Taylor's series

sin(E) =

LL)

3

!'/5!

e Truncate: At 'Sth" Order term

Fourth-order accurate
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Taylor Series Method (conva)

* Substitute Truncated Taylor's Series into Kepler's Equation

~(0 _,..0 ("3‘(0)13-
EP e [EY- ‘,;"' “M=0

* Solve for EA3 term ... to give startup algorithm

Fop . Selpo oM g

c
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Taylor Series Method (conva)

~op  O(l-e)m0 M _
EP+ ———E -8M=0

e "Resolvent Cubic" Equation has Closed-form Solution

.... two complex roots (complex root 1)

3 %277 (+.jV3) (-1 +e)

3
(162 e?M+V -23328 (-1+e) e’ +26244 e¥M?)

F

—_— 1/
) (1+i ‘\/3) (162 e?M+V -23328 (-1+e)’e”+26244 e ¥M%)

6x 21 7e
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Taylor Series Method (conva)

~3 O(l-e)a0 M
(E°P + — B -8M =0

e "Resolvent Cubic" Equation has Closed-form Solution

.... two complex roots (complex root 2)

3 %277 (1-jV3) (-1+e)

Iz
(162 e?M+v -23328 (-1+e)?e?+26244 e M%)

1+7V3) (162 e“M+V -23328 (-1 +c)7c?+26248 c?MZ)
J

6x 2 7¢
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Taylor Series Method (conra)
gop, Ol-elpo oM

c

* "Resolvent Cubic" Equation has Closed-form Solution

....and one REAL root ... which is the one we want ...

B SampMends,

-2e+26e + (3e2M+\/e3 (-8 (-1+e)3+9eM2))

2/3

e (3e2 M+ €3 (-8 (-1+€)° +9eM?) )1/3
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yfnﬂ"eitsﬂe OK .... How Good
are these Startup Values

 From Vallado (Ad-Hoc Solution)
... the Traditional Startup Assumption is

U M+e (0 <M<n)
M-¢ (n<sM<2n)
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UNIVERSITY  Startup Accuracy Metric

e The Closer SIE”Iis to "zero", then the more
accurate the startup value

SIE”)=E"Y - e sin (E”) - M

when E” =E = SIE?|=0
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0.004

0.002 ¢

N\

%omparison of Start-up Values

(Method 1)
Vellado

\ e =0.01

SEY)

-0.002

-0.004 }

-0.006

Fourth order /

(Method 3)

Mean Anomaly, radians
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UtahState omparison of Start-up Values

(cont’d)
0.04

(Method 1)

0.02 - Vellado c =O .1

1 1 1 1 1
2 3 4 \ 6

SEE”)

-0.02 |

i Fourth order

(Method 3)

-0.06 |

Mean Anomaly, radians
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UtahState omparison of Start-up Values

(cont’d)

e=0.5

0.2 (Method 1)
/ellado
~(0) \
SEE”| - s

w03 Fourth order/
ol (Method 3)

Mean Anomaly, radians
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UtahState omparison of Start-up Values

(cont’d)

e =0.90

(Method 1)

Fourth order

-1t (Method 3)

Mean Anomaly, radians
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fferation Plots (e=0.01)

#of points|
1100

eccentricity
~1(0.01

Max # of Iterations |

Slas |

% error required |

'=0.0000100 |

Mes . S

e
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UtahStatqicration Plots (e=0.1)

#of points |
=100

eccentricity

=lo0.10

Max # of Iterations |
Zlzs |

% error required |

'=0.0000100 |
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UtahStateieration Plots (e=0.5)

#of points

=|100

eccentricity

=10.50

Max # of lterations

=25 |

% error required

'=/0.0000100 |

Mecihwanicalladeaeng OS5 ac e
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vtanotateteration Plots (e=0.9)

#of points|
1100

eccentricity

=l0.90

Max # of Iterations |
=25 |

% error required |

> 0.0000100 |
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UtahState .
UNIVERSITY Conclusions?

e For Most Conditions the Simple "Vallado" Startup
Method gives Superior connvergence
... simplicity of the algorithm clearly justified its use

e Near the perigee, the 4th order (Taylor's series) startup
gives better convergence

e Where's the "push" point ... it appears that for all

eccentricities the Taylor's serie startup method
offers convergence advantages for

v < 0.25radians (~15°)

 Gives a convergence aid for solutions near perigee
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UNIVERSITY S0000... its looks like

M > 0.25 radians ... use

i M+e (0 <M<m)
M-¢ (n<sM<2n)

Otherwise .... use

RO _
-2e42¢€’ 4 (3e2M+\/e3 (-8 (-1+e)3+9eM2))

2/3

e (3e2 M+ €3 (-8 (-1+€)° +9eM?) )1/3
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