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 Appendix II to Lecture 2.2	


Solving and Applying
Kepler's Equation

Starting Condtions

Week3
Vallado Chapter 2

Sections 2.1, 2.2, 2.3
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 Numerical Solution of ���
Kepler's Equation	
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Anatomy of the Solver Algorithm	
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 Starting Value	


M=1.818	
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 Starting Value (cont’d)	
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 Starting Value (cont’d)	
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 Starting Value (cont’d)	

• Highly Eccentric Orbits



 

AA4362	

Starting Value (cont’d)	
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Starting Value (concluded)	


• Since we are solving Kepler’s Equation  for each and every	

Time point in our propagation of the orbit … convergence 	

speed becomes critically important	


• Clearly, since convergence near the	

Perigee of an eccentric orbit can be a bit	

Of a problem …	


Its clear that we need …. 	


• a better way to start each iteration	


• Next time 	

   …“Startup Algorithms”	
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Figure 5: Sample Orbit Calculation using Kepler's Equation
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 OK … so we need a better���
startup algorithm	


• So where do we start?… with a really Simple 	

ad-hoc solution ….. 	


• When M ~ 0, we simply “kick it off zero” by adding 	

or subtracting  … e (Vallado Algorithm)	
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 Derivation of Vallado���
Startup Algorithm*	


• Regroup Kepler’s Equation and Expand in a Taylor’s series	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• But	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	


• and the Taylor’s series reduces to	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• But	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	


• Solving for the derivative	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• and the Taylor’s series further reduces to	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	


• Truncating the series after first order	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• and now the “Vallado approximation”	
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 Derivation of Vallado���
Startup Algorithm*(cont’d)	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• “Vallado approximation”	


• Startup is most accurate for M ~ 1-e  -> for highly eccentric	

Orbits … this value for M also happens to be near Perigee	


• For low eccentricity orbits … we’ve already seen that	

It really doesn’t matter where you start	


• But how about intermediate eccentricity orbits, I.e. e=0.5	

  M -> 1-e = 0.5 radians ~28.65° ... ισ τηισ γοοδ ενουγη?	
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 Linear Interpolation as a Startup ���
Algorithm	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• Exploit the fact that Kepler’s equation is explicit in the	

“forward direction”	
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 Linear Interpolation as a Startup ���
Algorithm (cont’d)	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• Generate 3-D 	

Space of 	

{M, e, E} that	

Satisfy Kepler’s	

Equation	


• Use 2-D 	

Interpolation	

Of {M, e, E} 	

To Generate	

Starting Guess	
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 Linear Interpolation as a Startup ���
Algorithm (cont’d)	


* Proof is Courtesy of Brian M. Moore	

CPT, US Army, Naval Postgraduate School	

Space Systems Engineering, bmmoore@nps.navy.mil	


• Using a 	

“quaternary”	

Search pattern	

Interpolation 	

is fast	


• But stored	

Data base is 	

Rather large	


• Mesh Mesh	

Density fixed	

By maximum 	

Eccentricity of	

Orbits to be analyzed	
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OK … can we develop another���

startup algorithm?	


• So where do we start?… with the Fourier 	

series solution of Kepler’s Equation …..*	


*Dörrie, H. ``The Kepler Equation.'' 100 Great Problems of 	

Elementary Mathematics: Their History and Solutions. 	


New York: Dover, pp. 330-334, 1965.	
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 Fourier Series Solution	


• Very inefficient way to solve Kepler’s equation	
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 Fourier Series Solution (cont’d)	

• Buuuuttt … if we expand out the terms in the series	
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Fourier Series Solution (cont’d)	


• Substituting in for the Ji’s and collecting terms:	
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 Near the Troublesome point���
at perigee	


• at perigee … sin(µ M)  ~ µ Μ, { µ = 0, 1, 2, ...}	
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Fourier Series Method ���

Near Perigee	


• Higher Order Method … but still simple	

to implement	
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Taylor Series Method	


Fourth-order accurate	


At	
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Taylor Series Method (cont’d)	
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Taylor Series Method (cont’d)	


• "Resolvent Cubic" Equation has Closed-form Solution

     .... two complex roots (complex root 1)
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Taylor Series Method (cont’d)	
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Taylor Series Method (cont’d)	


Startup Method 3:	




 

AA4362	
 OK .... How Good ���
are these Startup Values	
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 Startup Accuracy Metric	
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 Comparison of Start-up Values	


S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.01

1 2 3 4 5 6

-0.006

-0.004

-0.002

0.002

0.004

(Method 3)	


(Method 1)	
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 Comparison of Start-up Values ���
(cont’d)	


S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.1

1 2 3 4 5 6

-0.06

-0.04

-0.02

0.02

0.04

(Method 3)	


(Method 1)	
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 Comparison of Start-up Values ���
(cont’d)	


S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.5

1 2 3 4 5 6

-0.4

-0.3

-0.2

-0.1

0.1

0.2 (Method 1)	


(Method 3)	
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 Comparison of Start-up Values ���
(cont’d)	


S E(0)  

Mean Anomaly, radians

Vellado

Fourth order

e =0.90

1 2 3 4 5 6

-1

-0.5

0.5 (Method 1)	


(Method 3)	
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 Iteration Plots (e=0.01)

100

#of points

0.01

eccentricity

25

Max # of Iterations

0.0000100

% error required

2.0 4.0 6.00.0 8.0

1

0

2

Vallado	




 

AA4362	
 Iteration Plots (e=0.1)

100

#of points

0.10

eccentricity

25

Max # of Iterations

0.0000100

% error required

2.0 4.0 6.00.0 8.0

1

2

0

3

Vallado	




 

AA4362	
 Iteration Plots (e=0.5)
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 Iteration Plots (e=0.9)
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 Conclusions?	


• For Most Conditions the Simple "Vallado" Startup
   Method gives Superior connvergence
    ... simplicity of the algorithm clearly justified its use

• Near the perigee, the 4th order (Taylor's series) startup
   gives better convergence

• Where's the "push" point ... it appears that for all
   eccentricities the Taylor's serie startup method
   offers convergence advantages for

                         ν < 0.25radians (~15° )

• Gives a convergence aid for solutions near perigee
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 Soooo... its looks like	



