UtahState

UNiversitr Appendix III to Lecture 2.2

Solving and Applying Kepler's Equation

Numerical Solution of Kepler's Equation

- OK, So How we Extract Numerical Solutions of
Kepler's Revenge!

$$
M_{t-0}=\left\{E_{t}-e \sin \left(E_{t}\right)\right\}
$$

Kepler

UtahState
 UNIVERSITY

Anatomy of the Solver Algorithm

UtahState UNIVERSITY
 Starting Value

Eccentric Anomaly, E (radians)

UtahState
 UNIVERSITY

Starting Value (conte)

- Highly Eccentric Orbits

Eccentric Anomaly, E (radians)

UtahState
 UNIVERSITY

Starting Value (contd)

CHighly Eccentric Orbits

Eccentric Anomaly, E (radians)

Starting Value (conta)

- Highly Eccentric Orbits
- Why is convergence "ill-tempered" (slow) near perigee?

$$
\begin{aligned}
& \mathrm{E}^{(i+1)}=\mathrm{E}^{(i)}+\frac{\mathrm{M}-\left[\mathrm{E}^{(i)}-\mathrm{e} \sin \left(\mathrm{E}^{(0)}\right)\right]}{1-\mathrm{e} \cos \left(\mathrm{E}^{(0)}\right)} \\
& \mathrm{E}^{(j+1)}=.11+\frac{0.0051583-[.11-0.95 \sin (.11])}{1-0.95 \cos (.11)}= \\
& 0.11+\frac{-.0005523}{.05574}=.10009154
\end{aligned}
$$

Starting Value (contd)

- Highly Eccentric Orbits

Why is convergence "ill-tempered"

 (slow) near perigee?- Normalized Change convergence criterion

$$
\left|\frac{\Xi^{(j+1)}-\Xi^{(j)}}{\Xi^{(j+1)}+\Xi^{(j)}}\right|=2\left|\frac{.10009154-0.11}{.10009154+0.11}\right|=.0943
$$

only a 9.4% change
... even though we are only 0.00009154 radians (.0052 ${ }^{\circ}$) off in our estimate

UtahState
 UNIVERSITY

Starting Value (omemataet)

- Since we are solving Kepler's Equation for each and every

Time point in our propagation of the orbit ... convergence speed becomes critically important

- Clearly, since convergence near the Perigee of an eccentric orbit can be a bit Of a problem ...

Its clear that we need

- a better way to start each iteration
- Next time
..."Startup Algorithms"

UtahState OK .. so we need a better startup algorithm

- So where do we start?... with a really Simple ad-hoc solution
- When $\mathrm{M} \sim 0$, we simply "kick it off zero" by adding or subtracting ... e (Vallado Algorithm)

$$
\begin{gathered}
\mathrm{M}=\mathrm{E}-\mathrm{e} \sin (\mathrm{E}) \\
\Downarrow
\end{gathered}
$$

$\begin{gathered}\text { Startup } \\ \text { Method } 1\end{gathered}:\left\{\begin{array}{c}0 \leq M \leq \pi: E_{0}=M+e \\ \pi<M<2 \pi: E_{0}=M-e\end{array}\right\}$
隹

UtahState UNIVERSITY

Derivation of Vallado Startup Algorithm*

- Regroup Kepler's Equation and Expand in a Taylor's series

$$
\begin{gathered}
\mathrm{M}=\mathrm{E}-\mathrm{e} \sin [\mathrm{E}] \Rightarrow \mathrm{E}(\mathrm{M})=\mathrm{M}+\mathrm{e} \sin [\mathrm{E}] \\
\mathrm{E}(\mathrm{M})=\mathrm{E}(0)+\mathrm{M}\left[\frac{\partial[\mathrm{M}+\mathrm{e} \sin [\mathrm{E}]}{\partial \mathrm{M}}\right]_{10}+O\left(\mathrm{M}^{2}\right)
\end{gathered}
$$

- But
when $\mathrm{M}=0 \Rightarrow \mathrm{E}(0)=\mathrm{e} \sin [\mathrm{E}(0)] \Rightarrow \mathrm{E}(0)=0$

[^0]

UtahState UNIVERSITY
 Derivation of Vallado Startup Algorithm*(contd)

- and the Taylor's series reduces to

$$
\mathrm{E}(\mathrm{M})=\mathrm{M}\left[1+\mathrm{e} \cos [\mathrm{E}] \frac{\partial \mathrm{E}}{\partial \mathrm{M}}\right]_{10}+O\left(\mathrm{M}^{2}\right)
$$

- But

$$
\frac{\partial[M+e \sin [\mathrm{E}]]}{\partial \mathrm{M}}=\frac{\partial \mathrm{E}}{\partial \mathrm{M}} \Rightarrow \frac{\partial \mathrm{E}}{\partial \mathrm{M}}=1+\mathrm{e} \cos [\mathrm{E}] \frac{\partial \mathrm{E}}{\partial \mathrm{M}}
$$

$$
\frac{\partial E}{\partial M}=\frac{1}{1-e \cos [E]} \Rightarrow 1+e \cos [E] \frac{\partial E}{\partial M}=1+\frac{\mathrm{e} \cos [E]}{[1-e \cos [E]]}
$$

[^1]

UtahState UNIVERSITY
 Derivation of Vallado Startup Algorithm*(contd)

- Solving for the derivative

$$
\frac{\partial \mathrm{E}}{\partial \mathrm{M}}=\frac{1}{1-\mathrm{e} \cos [E]} \Rightarrow 1+\mathrm{e} \cos [\mathrm{E}] \frac{\partial \mathrm{E}}{\partial \mathrm{M}}=1+\frac{\mathrm{e} \cos [\mathrm{E}]}{[1-\mathrm{e} \cos [\mathrm{E}]]}
$$

- and the Taylor's series further reduces to

$$
\begin{gathered}
E=M\left[1+\frac{e \cos [\mathrm{E}]}{[1-\mathrm{e} \cos [\mathrm{E}]]_{10}}+O\left(\mathrm{M}^{2}\right)\right. \\
\mathrm{E}=\mathrm{M}\left[1+\frac{\mathrm{e}}{[1-\mathrm{e}]}\right]+O\left(\mathrm{M}^{2}\right)
\end{gathered}
$$

UtahState Derivation of Vallado UNIVERSITY Startup Algorithm*(contd)

- Truncating the series after first order

$$
\widehat{\mathrm{E}} \approx \mathrm{M}+\mathrm{e}\left[\frac{\mathrm{M}}{[1-\mathrm{e}]}\right] \Rightarrow\left[\begin{array}{ll}
0 \leq \mathrm{M}<\pi & \Rightarrow \frac{\mathrm{M}}{[1-\mathrm{e}]}>0 \\
-\pi \leq \mathrm{M}<0(-) & \Rightarrow \frac{\mathrm{M}}{[1-\mathrm{e}]}<0
\end{array}\right]
$$

- and now the "Vallado approximation"

$$
\left|\frac{\mathrm{M}}{[1-\mathrm{e}]}\right| \approx 1\left[\begin{array}{ll}
0 \leq \mathrm{M}<\pi & \Rightarrow \widehat{\mathrm{E}} \approx \mathrm{M}+\mathrm{e} \\
{\left[\begin{array}{l}
-\pi \leq \mathrm{M}<0^{(-)}
\end{array}\right.} & \Rightarrow \widehat{\mathrm{E}} \approx \mathrm{M}-\mathrm{e}
\end{array}\right]
$$

[^2]CPT, US Army, Naval Postgraduate School
Space Systems Engineering, bmmoore@nps.navy.mil

UtahState Derivation of Vallado UNIVERSITY
 Startup Algorithm*(contd)

- "Vallado approximation"

$$
\left|\frac{\mathrm{M}}{[1-\mathrm{e}]}\right| \approx 1
$$

- Startup is most accurate for $\mathrm{M} \sim 1-\mathrm{e}->$ for highly eccentric Orbits ... this value for M also happens to be near Perigee
- For low eccentricity orbits ... we've already seen that It really doesn't matter where you start
- But how about intermediate eccentricity orbits, I.e. $e=0.5$ M -> 1-e $=0.5$ radians $\sim 28.65^{\circ}$... เб $\tau \eta \iota \sigma \gamma$ оoס $\varepsilon v o u \gamma \eta$?

[^3]
UtahState
 UNIVERSIDİnear Interpolation as a Startup Algorithm

$$
M_{t-0}=\left\{E_{t}-e \sin \left(E_{t}\right)\right\}
$$

- Exploit the fact that Kepler's equation is explicit in the "forward direction"

[^4]

UtahState
 UNIVERSIUİnear Interpolation as a Startup Algorithm (contd)

- Generate 3-D Space of $\{\mathrm{M}, \mathrm{e}, \mathrm{E}\}$ that Satisfy Kepler's Equation
- Use 2-D

Interpolation
Of $\{\mathrm{M}, \mathrm{e}, \mathrm{E}\}$
To Generate
Starting Guess

UtahState

UNVEREIHINear Interpolation as a Startup "quaternary" Algorithm (conta)
Search pattern Interpolation is fast

- But stored

Data base is
Rather large

- Mesh Mesh

Density fixed By maximum
 Eccentricity of
Orbits to be analyzed

> * Proof is Courtesy of Brian M. Moore
> CPT, US Army, Naval Postgraduate School

Space Systems Engineering, bmmoore@nps.navy.mil \exists

UtahState

UNIVERSITYK

can we develop another startup algorithm?

- So where do we start?... with the Fourier series solution of Kepler's Equation*
*Dörrie, H. " ${ }^{\text {The Kepler Equation." } 100 \text { Great Problems of }}$ Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 330-334, 1965.

UtahState Fourier Series Solution

$$
\begin{gathered}
\mathrm{M}=\mathrm{E}-\mathrm{e} \sin (\mathrm{E}) \\
\Downarrow \\
\mathrm{E}=\mathrm{M}+\sum_{n=1}^{\infty}\left[\frac{2}{n} \mathrm{~J}_{n}(n \mathrm{e}) \sin (n \mathrm{M})\right] \\
\mathrm{J}_{n}(n \mathrm{e})=\sum_{\mathrm{j}=0}^{\infty} \frac{(-1)^{\mathrm{j}}}{\mathrm{j}!(\mathrm{n}+\mathrm{j})!}\left(\frac{\mathrm{n} \mathrm{e}}{2}\right)^{\mathrm{n}+2 \mathrm{j}} \Rightarrow\left\{\begin{array}{l}
\text { Bessel Function } \\
\text { of the F First Kind }
\end{array}\right.
\end{gathered}
$$

- Very inefficient way to solve Kepler's equation

UtahState
 UNIVERSITY Fourier Series Solution (contd)

- Buuuuttt ... if we expand out the terms in the series

$$
\mathrm{E} \approx \mathrm{M}+\left[2 \mathrm{~J}_{1}(\mathrm{e}) \sin (\mathrm{M})\right]+\left[\mathrm{J}_{2}(2 \mathrm{e}) \sin (2 \mathrm{M})\right]+
$$

$$
\left[\frac{2}{3} \mathrm{~J}_{3}(3 \mathrm{e}) \sin (3 \mathrm{M})\right]+\ldots
$$

$$
\mathrm{J}_{1}(\mathrm{e}) \approx \frac{\mathrm{e}}{2}-\frac{\mathrm{e}^{3}}{16}+\frac{\mathrm{e}^{5}}{384}+\ldots
$$

$$
\mathrm{J}_{2}(\mathrm{e}) \approx \frac{\mathrm{e}^{2}}{2}-\frac{\mathrm{e}^{4}}{6}+\frac{\mathrm{e}^{6}}{48}+\ldots
$$

$$
\mathrm{J}_{3}(\mathrm{e}) \approx \frac{9 \mathrm{e}^{3}}{16}-\frac{81 \mathrm{e}^{5}}{256}+\frac{729 \mathrm{e}^{7}}{10240}+\ldots
$$

UtahState
 UNIVERSITY

Fourier Series Solution (contd)

- Substituting in for the J_{i} 's and collecting terms:

$$
\begin{gathered}
E \approx M+\left(\mathrm{e}-\frac{\mathrm{e}^{3}}{8}+\frac{\mathrm{e}^{5}}{192}\right) \sin (\mathrm{M})+ \\
\left(\frac{\mathrm{e}^{2}}{2}-\frac{\mathrm{e}^{4}}{6}+\ldots\right) \sin (2 \mathrm{M})+ \\
\left(\frac{3 \mathrm{e}^{3}}{8}-\frac{27 \mathrm{e}^{5}}{128}+\ldots\right) \sin (3 \mathrm{M})+\ldots
\end{gathered}
$$

MEantintol or

UtahState UNIVERSITYNear the Troublesome point at perigee

- at perigee $\ldots \sin (\mu \mathrm{M}) \sim \mu \mathrm{M},\{\mu=0,1,2, \ldots\}$

$$
\mathrm{E}_{0} \approx \mathrm{M}+\left(\mathrm{e}-\frac{\mathrm{e}^{3}}{8}+\ldots\right) \mathrm{M}+
$$

$$
\left(\frac{\mathrm{e}^{2}}{2}-\frac{\mathrm{e}^{4}}{6}+\ldots\right) 2 \mathrm{M}+
$$

$$
\left(\frac{3 \mathrm{e}^{3}}{8}-\frac{27 \mathrm{e}^{5}}{128}+\ldots\right) 3 \mathrm{M}+\ldots \approx
$$

$$
\mathrm{M}\left[1+\mathrm{e}+\mathrm{e}^{2}+\mathrm{e}^{3}+\ldots\right]
$$

Fourier Series Method Near Perigee

Startup Method 2

$$
\mathrm{E}_{0} \approx \mathrm{M}\left[1+\mathrm{e}+\mathrm{e}^{2}+\mathrm{e}^{3}\right]
$$

- Higher Order Method ... but still simple
to implement

Taylor Series Method

- Kepler's Equation

$$
E-e \sin (E)-M=0
$$

- Expand "Sine" term in Taylor's series

$$
\sin (E)=E-\frac{E^{3}}{3!}+\frac{E^{6}}{5!} \cdots
$$

- Truncate : At '5th" Order term

Fourth-order accurate

UtahState

UNIVERSITY

Taylor Series Method (contd)

- Substitute Truncated Taylor's Series into Kepler's Equation

$$
\widehat{\mathrm{E}}^{(0)}-\mathrm{e}\left[\widehat{\mathrm{E}}^{(0)}-\frac{\left(\widehat{\mathrm{E}}^{(0) \beta}\right.}{3!}\right]-\mathrm{M}=0
$$

- Solve for E ^3 term ... to give startup algorithm

$$
\left(\hat{E}^{0 \beta}+\frac{6(1-e)}{e} \widehat{E}^{0}-\frac{6 M}{e}=0\right.
$$

UtahState

UNIVERSITY

Taylor Series Method (contd)

$$
\left(\hat{\mathrm{E}}^{0}\right)^{3}+\frac{6(1-\mathrm{e})}{\mathrm{e}} \widehat{\mathrm{E}}^{0}-\frac{6 \mathrm{M}}{\mathrm{e}}=0
$$

- "Resolvent Cubic" Equation has Closed-form Solution
.... two complex roots (complex root 1)

$$
\begin{aligned}
& -\frac{3 * 2^{1 / 3}(+\ldots \sqrt{3})(-1+e)}{\left(162 e^{2} \mathrm{M}+\sqrt{-23328(-1+e)^{3} e^{3}+26244 e^{4} \mathrm{~m}^{2}}\right)^{1 / 3}}- \\
& -\frac{\left(1+j^{\sqrt{3}}\right)\left(162 \mathrm{e}^{2} \mathrm{M}+\sqrt{-23328(-1+e)^{3} e^{3}+26244 \mathrm{e}^{4} \mathrm{~m}^{2}}\right)^{1 / 3}}{6 * 2^{1 / 3} \mathrm{e}}
\end{aligned}
$$

UtahState

UNIVERSITY

Taylor Series Method (contd)

$$
\left(\widehat{\mathrm{E}}^{03}+\frac{6(1-\mathrm{e})}{\mathrm{e}} \widehat{\mathrm{E}}^{0}-\frac{6 \mathrm{M}}{\mathrm{e}}=0\right.
$$

- "Resolvent Cubic" Equation has Closed-form Solution
.... two complex roots (complex root 2)

$$
\begin{aligned}
& -\frac{3 * 2^{1 / 3}(1-\mathrm{j} \sqrt{3})(-1+\mathrm{e})}{\left(162 \mathrm{e}^{2} \mathrm{M}+\sqrt{-23328(-1+\mathrm{e})^{3} \mathrm{e}^{3}+26244 \mathrm{e}^{7} \mathrm{~m}^{2}}\right)^{1 / 3}}- \\
& \frac{(1+\mathrm{j} \sqrt{3})\left(162 \mathrm{e}^{z} \mathrm{~m}+\sqrt{-23328(-1+\mathrm{e})^{3} \mathrm{e}^{3}+26244 \mathrm{e}^{7} \mathrm{~m}^{2}}\right)^{1 / 3}}{6 *^{1 / 3} \mathrm{e}}
\end{aligned}
$$

UtahState

UNIVERSITY

Taylor Series Method (contd)

$$
\left(\hat{\mathrm{E}}^{03}+\frac{6(1-\mathrm{e})}{\mathrm{e}} \widehat{\mathrm{E}}^{0}-\frac{6 \mathrm{M}}{\mathrm{e}}=0\right.
$$

- "Resolvent Cubic" Equation has Closed-form Solution
.... and one REAL root ... which is the one we want ...
$\widehat{E}^{(0)}=\quad$ Startup Method 3:

$$
-2 e+2 e^{2}+\left(3 e^{2} M+\sqrt{e^{3}\left(-8(-1+e)^{3}+9 e M^{2}\right)}\right)^{2 / 3}
$$

$$
e\left(3 e^{2} M+\sqrt{e^{3}\left(-8(-1+e)^{3}+9 e M^{2}\right)}\right)^{1 / 3}
$$

OK How Good are these Startup Values

- From Vallado (Ad-Hoc Solution)
... the Traditional Startup Assumption is

$$
\hat{E}^{(0)}=\begin{array}{cc}
M+e & (0 \leq M \leq \pi) \\
M-e & (\pi \leq M \leq 2 \pi)
\end{array}
$$

Startup Accuracy Metric

- The Closer $\mathrm{S}\left(\hat{\mathrm{E}}^{(0)}\right\}$ is to "zero", then the more accurate the startup value

$$
S\left(\widehat{\mathrm{E}}^{(0)}\right) \equiv \widehat{\mathrm{E}}^{(0)}-\mathrm{e} \sin \left(\widehat{\mathrm{E}}^{(0)}\right)-\mathrm{M}
$$

$$
\text { when } \widehat{\mathrm{E}}^{(0)}=\mathrm{E} \Rightarrow \mathrm{~S}\left\{\widehat{\mathrm{E}}^{(0)}\right\}=0
$$

UtahState
 UNIVERSITComparison of Start-up Values

UtahState omparison of Start-up Values

(cont'd)

UtahState UNIVERSITK

(cont'd)

UtahState UNIVERSITK

 (cont'd)

Mean Anomaly, radians

UtahStaterteration Plots (e=0.01)

UtahStat

\#of points
100

| eccentricity |
| :--- | :--- |
| $\square 0.10$ |

Max \# of Iterations

- 25
\% error required
- 0.0000100

UtahStatelteration Plots $(\mathrm{e}=0.5)$ UNIVERSIT

Ansodvelureler indragivelog

UtahStatftration Plots $(\mathrm{e}=0.9)$ UNIVERIT

Conclusions?

- For Most Conditions the Simple "Vallado" Startup Method gives Superior connvergence
... simplicity of the algorithm clearly justified its use
- Near the perigee, the 4th order (Taylor's series) startup gives better convergence
- Where's the "push" point ... it appears that for all eccentricities the Taylor's serie startup method offers convergence advantages for

$$
v<0.25 \text { radians }\left(\sim 15^{\circ}\right)
$$

- Gives a convergence aid for solutions near perigee

UtahState
UNIVERSITY

Soooo... its looks like

$\mathrm{M} \boldsymbol{>} \mathbf{0 . 2 5}$ radians ... use

$$
\hat{E}^{(0)}=\begin{gathered}
M+e \quad(0 \leq M \leq \pi) \\
M-e \quad(\pi \leq M \leq 2 \pi)
\end{gathered}
$$

Otherwise use
$\widehat{\mathrm{E}}^{(0)}$
$-2 e+2 e^{2}+\left(3 e^{2} M+\sqrt{e^{3}\left(-8(-1+e)^{3}+9 e M^{2}\right)}\right)^{2 / 3}$

$$
e\left(3 e^{2} M+\sqrt{e^{3}\left(-8(-1+e)^{3}+9 e M^{2}\right)}\right)^{1 / 3}
$$

[^0]: * Proof is Courtesy of Brian M. Moore

 CPT, US Army, Naval Postgraduate School
 Space Systems Engineering, bmmoore@nps.navy.mil

[^1]: * Proof is Courtesy of Brian M. Moore

 CPT, US Army, Naval Postgraduate School
 Space Systems Engineering, bmmoore@nps.navy.mil

[^2]: * Proof is Courtesy of Brian M. Moore

[^3]: * Proof is Courtesy of Brian M. Moore

 CPT, US Army, Naval Postgraduate School
 Space Systems Engineering, bmmoore@nps.navy.mil

[^4]: * Proof is Courtesy of Brian M. Moore

 CPT, US Army, Naval Postgraduate School
 Space Systems Engineering, bmmoore@nps.navy.mil

