Orbital Mechanics:

Conservation of Angular Momentum and the In-plane Velocity vector

Kepler's Second \& Third Laws

Sutton and Biblarz: Chapter 4

Kepler's Second Law

Kepler's Second Law: In a two body universe, radius vector from the sun (Earth) to the planet (satellite) sweeps out equal areas in equal times

Incremental Area Swept Out by Radius vector

Incremental Area Swept out by an arc

MAE 5540-Propulsion Systems

Area Swept out by an Elliptical Arc

MAE 5540-Propulsion Systems

Area Swept out by an Elliptical Arc (contd)

$$
\begin{aligned}
& \mathrm{A}_{\substack{\text { life } \\
\text { fro }}}=\int_{v o}^{u n}\left[\frac{1}{2}\left[\frac{a\left[1-e^{2}\right]}{[1+e \cos (v)]}\right]^{2} d v\right]= \\
& \frac{1}{2}\left[a\left[1-e^{2}\right]\right]^{2} \int_{v o}^{v 1}\left[\frac{1}{[1+e \cos (v)]^{2}} d v\right] \\
& \text { "very difficult" integral }
\end{aligned}
$$ an Elliptical Arc (smenueses)

$$
\begin{aligned}
& \mathrm{A}_{\substack{\text { ellip. } \\
\text { arc }}}=\int_{\mathrm{v}_{\mathrm{o}}}^{v_{1}}\left[\frac{1}{2} \mathrm{r}(v)^{2} \mathrm{~d} v\right]= \\
& \text { (2) } \\
& {\left[\begin{array}{l}
\frac{\mathrm{e} \sqrt{\mathrm{e}^{2}-1} \operatorname{Sin}\left(\mathrm{v}_{1}\right)-2 \mathrm{~F}_{1}-2 \mathrm{e} \operatorname{Cos}\left(\mathrm{v}_{1}\right) \mathrm{F}_{1}}{\left(\mathrm{e}^{2}-1\right)^{3 / 2}\left[1+\mathrm{e} \operatorname{Cos}\left(\mathrm{v}_{1}\right)\right]} \\
\frac{\mathrm{e} \sqrt{\mathrm{e}^{2}-1} \operatorname{Sin}\left(\mathrm{v}_{0}\right)-2 \mathrm{~F}_{0}-2 \mathrm{e} \operatorname{Cos}\left(\mathrm{v}_{0}\right) \mathrm{F}_{0}}{\left(\mathrm{e}^{2}-1\right)^{3 / 2}\left[1+\mathrm{e} \operatorname{Cos}\left(\mathrm{v}_{0}\right)\right]}
\end{array}\right]} \\
& \mathrm{F}_{1}=\operatorname{Tanh}^{-1}\left[\frac{\left(\mathrm{e}-1 \vdots \operatorname{Tan}\left[\frac{\mathrm{v}_{1}}{2}\right]\right.}{\sqrt{\mathrm{e}^{2}-1}}\right] \\
& \mathrm{F}_{0}=\operatorname{Tanh}^{-1}\left[\frac{\left(\mathrm{e}-1 \left\lvert\, \mathrm{Tan}\left[\frac{v_{0}}{2}\right]\right.\right.}{\sqrt{\mathrm{e}^{2}-1}}\right]
\end{aligned}
$$

Total Area of an Elliptical Orbit

- But ... the Total area integral
Is a "Pretty
 Nice" form

$$
\mathrm{A}_{\substack{\text { ellipse } \\ \text { total }}}=\int_{0}^{2 \pi}\left[\frac{1}{2} \mathrm{r}(v)^{2} \mathrm{~d} v\right]=\mathrm{a}^{2} \pi \sqrt{1-\mathrm{e}^{2}}
$$

Mathematical Representation of Kepler's Second Law

T -->
Orbital period

$$
A_{t_{2}-t_{1}}=A_{\substack{\text { ellipses } \\ \text { toul }}} \frac{t_{2}-t_{1}}{T} \Rightarrow A_{t_{2}-t_{1}}=\left[a^{2} \pi \sqrt{1-e^{2}}\right] \frac{t_{2}-t_{1}}{T}
$$

Area Swept from Perapsis

MAE 5540 -Propulsion Systems

Time of Flight Graphs (cont'd)

MAE 5540-Propulsion Systems

Propogation of Orbital Position

Kelper's Second Law, Normalized Time vs. true anomaly, elliptical orbit

MAE 5540-Propulsion Systems

Orbit Propagation ... Kepler's Equation

$$
\frac{t_{2}-t_{1}}{T}=\frac{\int_{0}^{v_{2}}\left[\frac{1-\mathrm{e}^{2}}{1+\mathrm{e} \cos (v)}\right]^{2} \mathrm{~d} v-\int_{0}^{v_{1}}\left[\frac{1-\mathrm{e}^{2}}{1+\mathrm{e} \cos (v)}\right]^{2} \mathrm{~d} v}{2 \pi \sqrt{\left[1-\mathrm{e}^{2}\right]}}
$$

Solving this numerical integral for time of flight ... given initial And final positions is "doable"

$$
\text { i.e. given... }\left\{v_{1}, v_{2}, T\right\} \rightarrow \text { solve for transit time } \rightarrow\left\{t_{2}-t_{1}\right\}
$$

... but the inverse problem is numerically unstable and while TOF charts are good for illustrative purposes ... they are impractical for orbit propagation calculations ...

Fortunately $17^{\text {th }}$ century mathematicians developed a better way
MAE 5540 - Propulsion Systems

Eccentric Anomaly (contd)

- Solving for \boldsymbol{E} gives
$[1-\mathrm{e} \cos (\mathrm{E})] \cos (\mathrm{v})=\cos (\mathrm{E})-\mathrm{e} \Rightarrow$
$\cos (v)+e=\cos (E)+e \cos (E) \cos (v) \Rightarrow$

$$
\cos (E)=\frac{\cos (v)+e}{[1+e \cos (v)]}
$$

Eccentric Anomaly (contd)

- Thus we get the relationships

$$
\begin{aligned}
& \cos (v)=\frac{\cos (E)-e}{[1-e \cos (E)]} \\
& \cos (E)=\frac{\cos (v)+e}{[1+e \cos (v)]}
\end{aligned}
$$

- These equations can be unified into a single equation by performing additional geometry

True and Eccentric Anomaly (concluded)

- Or the final expression for the "true Anomaly" In terms of the "eccentric anomaly"

$$
\tan \left[\frac{\nu}{2}\right]=\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \left[\frac{\mathrm{E}}{2}\right]
$$

- Not even CLOSE! to finished yet
- OK, lets hang onto this ... we'll come back to it later

And after some even Messier algebra the "area integral" reduces to

$$
2 \pi\left[\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{~T}}\right]=\underset{\sqrt{* \mathrm{M}^{\prime}-\text { Mean Anomaly } \rightarrow \text { Normalized }}}{\mathrm{M}_{\mathrm{t}-0}=\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}}
$$

- Where t_{0} is the time of perapsis passage and

$$
\tan \left[\frac{v}{2}\right]=\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \left[\frac{\mathrm{E}}{2}\right]
$$

Mean anomaly $\mathbf{M}_{\mathbf{t}} \equiv 2 \pi \frac{\mathrm{t}_{\text {finm }}}{\mathbf{T}}$

MAE 5540 - Propulsion Systems

 Using Mean Anomaly to Propagate the Orbital Position

- Kepler's Equation defines the swept area from perapsis to the current position ...
- Adapted to an arbitrary starting point by performing following transformation

$$
\begin{aligned}
& \frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{1}\right]+\frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}_{1}-\mathrm{t}_{0}\right]=\frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{0}\right] \\
& \frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{1}\right]+\mathrm{M}_{\mathrm{t}_{1}-0}=\mathrm{M}_{\mathrm{t}-0}
\end{aligned}
$$

行
 Using Mean Anomaly to Propagate the Orbital Position

(cont'd)

- Substituting into Kepler's equation

$$
M_{t-0}=\{E-e \sin (E)\}=\frac{2 \pi}{T}\left[t-t_{1}\right]+M_{t_{1}-0}
$$

-Accounting for the fact that t may be large enough that multiple orbits may have passed during the time from to to t

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{t}-0}=\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}=\frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{1}-\mathrm{k} \mathrm{~T}\right]+\quad \mathrm{M}_{\mathrm{t}_{1}-0} \\
& \text { where } \mathrm{k}=\mathrm{INT}\left[\frac{\mathrm{t}-\mathrm{t}_{1}}{\mathrm{~T}}\right] \text { (integer number of periods elapsed since } \mathrm{t}_{1} \text {) } \\
& \text { MAE 5540-Propulsion Systems }
\end{aligned}
$$

Using Mean Anomaly to

Propagate the Orbital Position

(cont'd)

- The time increment term can be further simplified by noting that

$$
\frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{1}-\mathrm{k} \mathrm{~T}\right]=\frac{2 \pi}{\mathrm{~T}}\left[\mathrm{t}-\mathrm{t}_{1}-\mathbb{N T}\left[\frac{\mathrm{t}-\mathrm{t}_{1}}{\mathrm{~T}}\right] \times \mathrm{T}\right]=
$$

$$
\frac{2 \pi}{\mathrm{~T}} \text { Modulus }\left[\left(\mathrm{t}-\mathrm{t}_{1}\right), \mathrm{T}\right]
$$

"Remainder function"

$$
\text { i.e. } \operatorname{Modulus}[31,7]=31-\operatorname{int}[31 / 7] \times 7=3
$$

 Using Mean Anomaly to
 Propagate the Orbital Position

(concluded)

- And the working form of Kepler's equation results

$$
\{\mathrm{E}-\mathrm{e} \sin (\mathrm{E})\}=\frac{2 \pi}{T} \operatorname{Modulus}\left[\left(\mathrm{t}-\mathrm{t}_{\mathrm{l}}\right), \mathrm{T}\right]+\quad \mathrm{M}_{\mathrm{t}_{1}-0}
$$

Kepler's Revenge!

MAE 5540-Propulsion Systems

- Given the orbit parameters (a, e) and an Initial Starting Time and Position

$$
t_{1}, v_{1}
$$

1) Compute Starting Eccentric Anomaly (work in radians!)

$$
E_{1}=2 \tan ^{-1}\left[\sqrt{\frac{1-e}{1+e}} \tan \left[\frac{v_{1}}{2}\right]\right]
$$

Propagation Algorithm

(continued)
2) Now ComputeCurrent Mean Anomaly (work in radians!)

$$
M_{t_{1}-0}=\left\{E_{1}-e \sin \left(E_{1}\right)\right\}
$$

Propagation Algorithm

(continued)
3) Compute the orbit Period

$$
\mathrm{T}=2 \pi \frac{\mathrm{a}^{3 / 2}}{\sqrt{\mu}} \text { Kepler's third law } \begin{aligned}
& \text { We still need to derive this! }
\end{aligned}
$$

4) and the future mean anomaly (at time t

$$
M_{t-0}=\frac{2 \pi}{T} \operatorname{Modulus}\left[\left(t-t_{1}\right), T\right]+\quad M_{t_{1}-0}
$$

Propagation Algorithm

(continued)
5) Now Solve Kepler's Equation for the New Eccentric Anomaly

$$
M_{t-0}=\left\{E_{t}-\mathrm{e} \sin \left(\mathrm{E}_{\mathrm{t}}\right\}\right\}
$$

Use your Newton Solver!

True Mean Anomaly

Refined estimate

MAE 5540-Propulsion Systems

Propagation Algorithm

(concluded)
6) Compute the NEW true anomaly
$v_{\mathrm{t}}=2 \tan ^{-1}\left[\sqrt{\frac{1+\mathrm{e}}{1-\mathrm{e}}} \tan \left[\frac{\mathrm{E}_{\mathrm{t}}}{2}\right]\right]$

Kepler's Second Law (Alternate form) What is the physical Interpretation?

Reconsider the "Swept Area" Integral

$$
A_{v_{2}}=A_{v_{1}}+a^{2} \cdot \pi \cdot \sqrt{1-e^{2}} \cdot \frac{t_{2}-t_{1}}{T}
$$

Let's look at this integral in differential form ...

Kepler's Second Law (Alternate form) What is the physical Interpretation?

$$
\left\{\begin{array}{c}
\text { Let: }\left[\mathrm{t}_{2} \Rightarrow \mathrm{t}_{1}\right] \rightarrow \mathrm{t}_{2}-\mathrm{t}_{1}=d \mathrm{t} \\
\text { Then: } \mathrm{A}_{\mathrm{t}_{2}-\mathrm{t}_{1}}=d \mathrm{~A}(\mathrm{t})
\end{array} \Rightarrow d \mathrm{~A}(\mathrm{t})=\left[\mathrm{a}^{2} \pi \sqrt{1-\mathrm{e}^{2}}\right] \frac{d \mathrm{t}}{\mathrm{~T}}\right.
$$

- But

$$
d \mathrm{~A}(\mathrm{t})=\frac{1}{2} \mathrm{r}^{2} d v
$$

and

$$
\frac{d \mathrm{~A}(\mathrm{t})}{d \mathrm{t}}=\frac{\left[\mathrm{a}^{2} \pi \sqrt{1-\mathrm{e}^{2}}\right]}{\mathrm{T}}=\frac{\frac{1}{2} \mathrm{r}^{2} d v}{d \mathrm{t}}=\frac{1}{2} \mathrm{r}^{2} \frac{d v}{d \mathrm{t}}
$$

Mathematical Representation of Kepler's Second Law (cominex)

 Engineering
 Torque Acting on Orbiting Space Craft

"rate of change of angular momentum"

MAE 5540-Propulsion Systems

Angular Momentum of An Orbiting Spacecraft

 Angular Momentum of
 An Orbiting Spacecraft (conts)

MAE 5540-Propulsion Systems

Alternate Statement of of Kepler's Second law:

$$
\left.\frac{\overline{\mathrm{L}}_{\mathbf{m}}}{\equiv} \bar{l}=\omega \mathbf{r}^{2} \bar{i}_{k} \Rightarrow \omega \mathbf{r}^{2}=l \text { (specific angular momentum }\right)
$$

"The angular momentum of an orbiting object is constant"

The velocity vector:

The velocity vector:

MAE 5540-Propulsion Systems

The velocity vector: (comes)

$=\dot{\mathrm{r}} \overline{\mathrm{I}}_{\mathrm{r}}+\mathrm{r} \dot{\boldsymbol{v}} \overline{\mathrm{I}}_{v}$

$$
\omega=\frac{\partial v}{\partial \mathrm{t}}
$$

$$
\begin{gathered}
\overline{\mathbf{V}}=\frac{\partial \overline{\mathbf{R}}}{\partial \mathrm{t}}+[\overline{\mathbf{0}} \times \overline{\mathbf{R}}]= \\
\frac{\partial \mathbf{r}}{\partial \mathrm{t}} \overline{\boldsymbol{i}}_{r}+\left\lvert\,\left[\begin{array}{ccc}
\bar{i}_{r} & \bar{i}_{v} & \bar{i}_{k} \\
0 & 0 & \omega \\
\overline{\mathbf{r}} & 0 & 0
\end{array}\right]=\frac{\partial \mathbf{r}}{\partial \mathrm{t}} \overline{\boldsymbol{i}}_{r}+\boldsymbol{\omega} \mathbf{r} \overline{\boldsymbol{i}}_{v}\right.
\end{gathered}
$$

Velocity Vector, Elliptical orbit

$$
\overline{\mathbf{V}}=\frac{\partial \mathbf{r}}{\partial \mathrm{t}} \overline{\boldsymbol{i}}_{r}+\omega \mathbf{r} \overline{\boldsymbol{i}}_{v}
$$

- The polar form of the ellipse equation

Velocity Vector, elipuearont

$$
\begin{gathered}
\overline{\mathrm{V}}=\frac{d}{d \mathrm{t}} \overline{\mathrm{r}}=\frac{d}{d \mathrm{t}}[\mathrm{r}(v)] \overline{\mathrm{i}}_{\mathrm{r}}+\mathrm{r}(v) \omega \overline{\mathrm{i}}_{v} \\
\overline{\mathrm{r}}=\left[\frac{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}{1+\mathrm{e} \cos (v)}\right] \\
\frac{d}{d t}[\mathrm{r}(v)]=\frac{d}{d t}\left[\left[\frac{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}{1+\mathrm{e} \cos (v)}\right]\right]=\frac{-\mathrm{a}\left[1-\mathrm{e}^{2}\right]}{[1+\mathrm{e} \cos (v)]^{2}}[-\mathrm{e} \sin (v)] \frac{d v}{d t}= \\
\frac{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}{[1+\mathrm{e} \cos (v)]} \frac{[\mathrm{e} \sin (v)]}{[1+\mathrm{e} \cos (v i]} \omega=\mathrm{r} \cdot v i \omega \frac{[\mathrm{e} \sin (v)]}{[1+\mathrm{e} \cos (v)]}
\end{gathered}
$$

Velocity Mectorg Elliptical Orbit

Angular Velocity of Spacecraft

Kepler's Second Law

$$
\begin{gathered}
\frac{\boldsymbol{\eta}^{2}}{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}=\mu \Rightarrow \boldsymbol{\mu}=\sqrt{\mu \mathrm{a}\left[1-\mathrm{e}^{2}\right]} \\
\downarrow \\
\omega=\frac{\sqrt{\mu \mathrm{a}\left[1-\mathrm{e}^{2}\right]}}{\mathrm{r}^{2}} \quad \begin{array}{l}
\text { Later we'll show } \\
\text { This is the same } \\
\mu=G \cdot M_{\oplus}
\end{array}
\end{gathered}
$$

Kepler's third law

$$
\frac{\frac{4 a^{4} \pi^{2}\left[1-e^{2}\right]}{T^{2}}}{a\left[1-e^{2}\right]}=\frac{4 a^{3} \pi^{2}}{T^{2}}
$$

> Later we'll show This is the same $\mu=G \cdot M_{\oplus}$

$$
\boldsymbol{\cdot} \boldsymbol{\mu} \frac{\boldsymbol{I}^{2}}{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}=\text { constant }=\frac{4 \mathrm{a}^{3} \pi^{2}}{\mathrm{~T}^{2}}
$$

- Kepler's Third Law: In a two body universe, square of the period of any object revolving about the sun (Earth) is in the same ratio as the cube of its mean distance

Angular Velocity of Spacecraft (comed)

$$
\begin{aligned}
& \mathbf{I}=\sqrt{\mu \mathrm{a}\left[1-\mathrm{e}^{2}\right]}=\underset{\text { Kepier's Second Lav }}{=\mathrm{r}_{\mathrm{p}}^{2}} \omega \Rightarrow \omega=\frac{\sqrt{\mu \mathrm{a}\left[1-\mathrm{e}^{2}\right]}}{\mathrm{r}_{\mathrm{p}}^{2}} \\
& \text { Circle: } \\
& \omega=\frac{\sqrt{\mu \mathrm{a}[1-0]}}{\mathrm{a}^{2}}=\frac{\sqrt{\mu}}{\mathbf{a}^{3 / 2}} \\
& \text { Ellipse: } \\
& \left.\omega=\frac{\sqrt{\mu \mathrm{a}\left[1-\mathrm{e}^{2}\right]}}{\left[\mathrm{a}\left[1-\mathrm{e}^{2}\right] /[1+\mathrm{e} \operatorname{Cos}(v i v]\right.}\right]^{2}=\frac{\sqrt{\mu}}{\left[\mathrm{a}\left[1-\mathrm{e}^{2}\right]\right]^{3 / 2}}\left[1+\mathrm{e} \operatorname{Cos}(v i v]^{2}\right.
\end{aligned}
$$

Angular Velocity of Spacecraft (com(t)

$$
\begin{gathered}
\text { Circle: } \\
\omega \mathrm{T}=\frac{\sqrt{\mu}}{\mathrm{a}^{3 / 2}} \times \frac{2 \pi \mathrm{a}^{3 / 2}}{\sqrt{\mu}}=2 \pi
\end{gathered}
$$

$$
\begin{gathered}
\text { Ellipse: } \\
\omega \mathrm{T}=\frac{\sqrt{\mu}}{\left[\mathrm{a}\left[1-\mathrm{e}^{2}\right]\right]^{3 / 2}}\left[1+\mathrm{e} \operatorname{Cos}(\mathrm{vi}]^{2} \times \frac{2 \pi \frac{\mathrm{a}^{322}}{\sqrt{\mu}}=}{}\right. \\
2 \pi \frac{[1+\mathrm{e} \operatorname{Cos}(v i}{} \frac{]^{2}}{\left[\left[1-\mathrm{e}^{2}\right]\right]^{3 / 2}}
\end{gathered}
$$

Elliptical Orbit, Normalized Angular Velocity

Orbital Speed -- Magnitude of the Velocity Vector (cont'd)

- Taking the Magnitude of the Velocity Vector to get Orbital Speed

$$
\begin{gathered}
\nabla_{\mathrm{p}}=\mathrm{r}_{\mathrm{p} j} \mathrm{vi} \omega\left[\frac{[\mathrm{e} \sin \cdot v)]}{[1+\mathrm{e} \cos (\mathrm{v})} \mathrm{i}_{\mathrm{r}}+\mathrm{i}_{\mathrm{v}}\right] \\
\left\lvert\, \overline{\mathrm{V}}_{\mathrm{p}}{ }^{2}=\left[\mathrm{r}_{\mathrm{p}}(\mathrm{v}) \omega\right]^{2}\left[\left[\left[\frac{[\mathrm{e} \sin (\mathrm{ivi} \mid]}{[1+\mathrm{e} \cos \cdot v)}\right]^{2}+1\right]\right.\right.
\end{gathered}
$$

Orbital Speed -- Elliptical Orbit (conte)

- But from Kelper's second law (angular momentum form)

$$
\mathrm{r}^{2} \omega=\frac{2\left[\mathrm{a}^{2} \pi \sqrt{1-\mathrm{e}^{2}}\right]}{\mathrm{T}} \equiv \boldsymbol{I}
$$

$$
[\mathrm{r}(v) \omega]^{2}=\left[\mathrm{r}(v) \omega \frac{1}{\mathrm{r}(v)}\right]^{2}=\frac{\left[\mathrm{r}^{2}(v) \omega\right]^{2}}{\mathrm{r}^{2}(v)}=\square_{\left[\frac{\boldsymbol{r}}{}\right]^{2}(v)}
$$

$$
\left\lvert\, \mathrm{V}^{2}=\left[\frac{\|}{\pi(v)}\right]^{2}\left[\left[\frac{[\mathrm{e} \sin (v)]}{[1+\mathrm{e} \cos (v)]}\right]^{2}+1\right]\right.
$$

Orbital Speed -- Elliptical Orbit (comito)

- Expanding squares and collecting terms

$$
\begin{aligned}
& |\overline{\mathrm{V}}|^{2}=\left[\frac{\boldsymbol{\boldsymbol { I }}}{\mathrm{r}}\right]^{2}\left[\frac{\left[\mathrm{e}^{2} \sin ^{2}(v)+\left[1+\mathrm{e} \cos (v i j]^{2}\right]\right.}{[1+\mathrm{e} \cos (v)]^{2}}\right] \\
& {\left[\frac{\boldsymbol{\Pi}}{\mathrm{r}}\right]^{2}\left[\frac{\mathrm{e}^{2} \sin ^{2}\left(\underline{v} \dot{\eta}+1+2 \mathrm{e} \cos (v)+\mathrm{e}^{2} \cos ^{2}(v i)\right.}{\left[1+\mathrm{e} \cos (v i)^{2}\right.}\right]=} \\
& {\left[\frac{\boldsymbol{\Pi}}{\mathbf{r}}\right]^{2}\left[\frac{1+2 \mathrm{e} \cos (v)+\left(\mathrm{e}^{2}\right)}{\left[1+\mathrm{e} \cos (v i]^{2}\right.}\right]=\left[\frac{\boldsymbol{\Pi}}{\mathrm{r}}\right]^{2}\left[\frac{2+2 \mathrm{e} \cos \left(v!+\mathrm{e}^{2}-1\right.}{\left[1+\mathrm{e} \cos (v i]^{2}\right.}\right]=} \\
& {\left[\frac{\boldsymbol{\Pi}}{\mathbf{r}}\right]^{2}\left[\frac{2[1+\mathrm{e} \cos (v)]-\left(1-\mathrm{e}^{2}\right)}{[1+\mathrm{e} \cos (v)]^{2}}\right]=\left[\frac{\boldsymbol{\boldsymbol { I }}}{\mathbf{r}}\right]^{2}\left[\frac{2}{1+\mathrm{e} \cos (v)}-\frac{1-\mathrm{e}^{2}}{\left[1+\mathrm{e} \cos (v i]^{2}\right.}\right]}
\end{aligned}
$$

Orbital Speed -- Elliptical Orbit (conta)

- Substituting in the "radius" equation

Orbital Speed -- Elliptical Orbit (comes)

- Collecting like terms in r

$$
\left\lvert\, \overline{\mathrm{V}}^{2}=\left[\frac{\boldsymbol{\|}}{\mathrm{r}}\right]^{2} \frac{\mathrm{r}}{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}\left[2-\frac{\mathrm{r}}{\mathrm{a}}\right]=\left[\frac{\boldsymbol{I}^{2}}{\mathrm{r}^{2}}\right] \frac{\mathrm{r}^{2}}{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]=\right.
$$

$$
\left\lvert\, \overline{\mathrm{V}}^{2}=\frac{\boldsymbol{l}^{2}}{\underline{\mathrm{a}\left[1-\mathrm{e}^{2}\right]}}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]=\underline{\mu}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{a}}\right]\right.
$$

Kepler's Second and Third Law Summary

- Kepler's Second Law: In a two body universe, radius vector from the sun (Earth) to the planet (satellite) sweeps out equal areas in equal times
\rightarrow Derives from constant angular momentum
- Swept Area Rule :

$$
\frac{d A(t)}{d t}=\frac{a^{2} \pi \sqrt{1-e^{2}}}{T}=\frac{1}{2} r^{2} \frac{d \nu}{d t}=\frac{\omega \cdot r^{2}}{2}
$$

- Angular Momentum :

$$
\vec{l}=\frac{\vec{L}}{m}=\omega \cdot r^{2} \cdot \vec{i}_{k}
$$

- Gravitational Torque:

$$
\tau_{\text {grav }}=\vec{r} \times \vec{F}_{\text {grav }}=0 \rightarrow \frac{\vec{L}}{m}=\text { const }
$$

MAE 5540-Propulsion Systems

Kepler's Second and Third Law Summary (2)

- Kepler's Third Law: In a two body universe, square of the period of any object revolving about the sun (Earth) is in the same ratio as the cube of its mean distance
\rightarrow Corollary to Second law

$$
\begin{aligned}
& \{l, a, e \rightarrow \text { const }\} \rightarrow \text { define constant } \mu \equiv \frac{l^{2}}{a \cdot\left(1-e^{2}\right)} \\
& \rightarrow \frac{a^{2} \pi \sqrt{1-e^{2}}}{T}=\frac{l}{2} \rightarrow T=\frac{2 \cdot a^{2} \pi \sqrt{1-e^{2}}}{l}=\frac{2 \cdot a^{2} \pi \sqrt{1-e^{2}}}{\sqrt{\mu \cdot a \cdot\left(1-e^{2}\right)}}=\left(\frac{2 \cdot \pi}{\sqrt{\mu}}\right) \cdot a^{3 / 2}
\end{aligned}
$$

$$
T=\frac{2 \pi}{\sqrt{\mu}} a^{3 / 2}
$$

Kepler's Second and Third Law Summary

- Angular Velocity:

$$
\omega=\frac{1}{r^{2}} \frac{2 a^{2} \pi \sqrt{1-e^{2}}}{T}
$$

- Velocity Vector:

$$
\vec{V}=\left[\begin{array}{c}
r \cdot \omega \cdot \frac{e \cdot \sin \nu}{1+e \cdot \cos \nu} \cdot \vec{i}_{r} \\
r \cdot \omega \cdot \vec{i}_{\nu}
\end{array}\right] \rightarrow\left[\begin{array}{l}
r=a \cdot \frac{1-e^{2}}{1-e \cdot \cos \nu} \\
\omega=\frac{1}{r^{2}} \frac{2 a^{2} \pi \sqrt{1-e^{2}}}{T}
\end{array}\right]
$$

- Normalized Angular Velocity :

$$
\omega \cdot T=\frac{2 a^{2} \pi \sqrt{1-e^{2}}}{r^{2}}=\frac{2 a^{2} \pi \sqrt{1-e^{2}}}{\left(a \cdot \frac{1-e^{2}}{1-e \cos \nu}\right)^{2}}=2 \cdot \pi \cdot \frac{(1+e \cdot \cos \nu)^{2}}{\left(1-e^{2}\right)^{3 / 2}}
$$

Kepler's Second and Third Law Summary

- Normalized Angular Velocity :
$\omega \cdot T=\frac{2 a^{2} \pi \sqrt{1-e^{2}}}{r^{2}}=\frac{2 a^{2} \pi \sqrt{1-e^{2}}}{\left(a \cdot \frac{1-e^{2}}{1-e \cos \nu}\right)^{2}}=2 \cdot \pi \cdot \frac{(1+e \cdot \cos \nu)^{2}}{\left(1-e^{2}\right)^{3 / 2}}$

MAE 5540 - PrC $_{\text {r }}$ I

- Kepler's Second and Third Law Summary (5)
- Orbital Speed
$\|\vec{V}\|^{2}=r^{2} \cdot \omega^{2} \cdot\left(\left(\frac{e \cdot \sin \nu}{1+e \cdot \cos \nu}\right)^{2}+1\right)=\frac{l^{2}}{a \cdot\left(1-e^{2}\right)} \cdot\left(\frac{2}{r}-\frac{1}{a}\right) \equiv \mu \cdot\left(\frac{2}{r}-\frac{1}{a}\right)$

$$
\|\vec{\rightharpoonup}\|=\sqrt{\frac{2 \cdot \mu}{r}-\frac{\mu}{a}}
$$

Linear Velocity of Spacecraft

- Just an alternate Form of the Energy Equation

$$
\bar{V} P^{2}=\frac{l^{2}}{a\left[1-e^{2}\right]}\left[\frac{2}{r}-\frac{1}{a}\right]=\mu\left[\frac{2}{r}-\frac{1}{a}\right]
$$

Orbital Energy

- To Understand that ... we'll first have to show that the orbital dynamics are a result of the balance between kenetic and potential energy
- Specifically

Total Specific Energy

Specific Kinetic Energy

$$
-\frac{\mu}{r}
$$

Specific Potential Energy

- Next Isaac Newton and His Apple!

Linear Velocity of Spacecraft

$$
\begin{aligned}
& \mu \equiv \mathrm{GM} \Rightarrow \text { planetary } \\
& \text { gravitational parameter }
\end{aligned}
$$

$$
\mu_{\text {earth }}=\mathrm{GM} \approx 6.672 \times 10^{-1} \frac{\mathrm{Nt}-\mathrm{m}^{2}}{\mathrm{~kg}^{2}} \times 5.974 \times 10^{24} \mathrm{~kg}=
$$

$3.98565 \times 10^{14} \frac{\mathrm{Nt}^{2} \mathrm{~m}^{2}}{\mathrm{~kg}}=3.986 \times 10^{14} \frac{\mathrm{~m}^{3}}{\mathrm{sec}^{2}}=1.4076 \times 10^{16} \frac{\mathrm{ft}^{3}}{\mathrm{sec}^{2}}$

$$
\begin{aligned}
& \mu_{\mathrm{moon}}=4.903 \times 10^{3} \frac{\mathrm{~m}^{3}}{\mathrm{sec}^{2}} \\
& \mu_{\text {sun }}=1.327 \times 10^{20} \frac{\mathrm{~m}^{3}}{\mathrm{sec}^{2}} \\
& \mu_{\text {Mars }}=4.269 \times 10^{4} \frac{\mathrm{~m}^{3}}{\mathrm{sec}^{2}}
\end{aligned}
$$

We'll prove this next!

MAE 5540-Propulsion Systems

