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Kinematics versus Dynamics

e Up to now we have mostly dealt with orbital motions
from a kinematics point of view ... I.e. Kepler’s laws
Were used simply as descriptors of orbital motion

e Kepler's laws are a reasonable approximation of
the motions of a small body orbiting around a
much larger body in a 2-body universe

... but there are no Physics (I.e. Isaac Newton)
Involved

e Kepler derived his laws of planetary motion by
Empirical observation only.
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Summary: Kepler’s Laws

e Kepler’s First Law: In a two body universe,
orbit of a satellite is a conic section with the Earth
centered at one of the focii
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Kepler's Laws onta)

.Parameters of the Orbit
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e Kepler’s Second Law: In a two body universe,
radius vector from the Earth to the satellite
sweeps out equal areas in equal times

A A CTE
= [mll-ez]x_tthO_
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Final position

Time of flight

Propogation of Orbital Position

Kelper's Second Law, Normalized Time vs. true anomaly, elliptical orbit
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Kepler's third law

Kepler's

second law R ~

T~ LZ (a2 mi1-& ]}- 4ot 12[1- 7]

n= I = T _ T _
all-e?] all-e?] al - €]
da% 2 [1- &7
|42 T =27 g0
all - e?] T \/;

= constant = __ﬂ'a3 27['2
a[l-e2] 1T

e Kepler’s Third Law: In a two body universe, square of the
period of any object revolving about the sun (Earth) is in the
same ratio as the cube of its mean distance
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e Kepler’s Third Law: In a two body universe,
square of the period of any object revolving
about the Earth is in the same ratio as the

cube of its mean distance

T —_ 2 T a3/ 2 Haven’t really

e proven this! Yet.
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Propagation of Orbital Position

Kelper's Second Law, Normalized Time vs. true anomaly, elliptical orbit
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Angular Velocity of Spacecraft

I = fv(ua[l-ez] :I%(,L) = (D:/\/I'l ag_ez]
Kepler's Second Law g
Circle:
ypall-0] ~p—
©= ) e
Ellipse:
Y,
W= Juall - == il [1+e Cos[v]]2
[a[l-€2]/[1 +eCosivi]F [a[l-e?] " -
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Kepler's third law(corollary)

- In the process of demonstrating Kepler's third
law, we have also indirectly demonstrated that,
for an elliptical orbit the orbital speed (Magnitude
of the Velocity Vector) is

| 2 1 2 1
r|2 a[l-e 1 " :M_r_'ﬁ_

1
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Isaac Newton

e Sir Isaac Newton used his new calculus and
laws of motion and gravitation to show that
Kepler was right.

* One day in 1682 he came up to his friend,
Edmund Halley, and casually mentioned to him
that he'd proved that, with a 1/r? force law like
gravity, planets orbit the sun in the shapes

of conic sections.

e This undoubtedly took Halley aback, as Newton
had just revealed to him the nature of the Universe
(at least the Universe as it was known then).

MAE 5540 - Propulsion Systems
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Newton ...

*Halley then pressed Newton to publish his findings, but he
realized that he'd forgotten the proof.

 After struggling to remember how he had proved the t
heorem, he published his work and 1t later appeared in full
form 1n his classic work: Philosophiae Naturalis Principia
Mathematica -- commonly known as the Principia --
published in168&7.

e OK ... let walk down Newton’s path to enlightenment!

MAE 5540 - Propulsion Systems 15
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Postscript: Magnitude of
the Velocity vector

But whatis p ?

* To Understand that ... we'll first have to show that
the orbital dynamics are a result of the balance between

kenetic

and potential energy

- The Energy Equation

\

MAE 55401

M E u
2a 2 T
Total  Specific  Specific

Specific  Kinetic  Potential

Energy = Energy  Energy

Engineering
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Gravitational Physics

* Now by introducing a bit of "gravitational
physics" we can unify the entire
mathematical analysis

F
"Inverse-square” /
law "potential”
field @ .
i

Isaac Newton, (1642-1727)
1
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Gravitational Physics

(cont'd)

- Constant G appearing in Newton's
law of gravitation, known as the
universal gravitational constant.

 Numerical value of G

G=6672x 10" NI — 3
ko

i {t2

3325x 10" L

[bm?
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N
Gravitational Potential \§\\
Energy L 3

Gravitational potential energy equals the
amount of energy released when the Big Mass
M pulls the small mass m at infinity to a
location r in the vicinity of a mass M

o0

- Energy of position

T
PEglav = Eneleased: F-dr=
o0
rr | |
-
% dr = GMm{%%} - GMm
00
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"Work and
Potential Energy”

- Work can be loosely defined
as the ability of an applied force
to do something useful

20
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Mechanical "Work"

- = Inner product of the applied Force vector and the
change in the position vector caused by the applied force

W =|F| [t cos []

~
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What if F is a function of r?

Iaeeeee

— s
L e AT AT YT T

dW = |F(r) -dt|=

MAE 5540 - Propulsion Systems
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Work Against a Gravity Field

‘Work Done to Pull a mass m, against a gravity
field caused by mass M, from from radius r to «

against M

fole}
— W performed :f F . d]‘ —
Ir
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Energy

‘Energy released when the small mass m falls
back towards M is the same as the energy
reauired to move m to inifintv in the first place

\\
Gravitational Potential $
=

Pp = Ereleased -

grav

- Wperformed = |- G 1}‘/1 m

against M
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Kinetic Energy

Newton's Second Law ~ F=ma= m(h_\t/

V
Fipeic= W peformed = Jf F-dr

to accelerate m

- Energy of
"motion”
av . dr = dr . 377 — dr _ 57 *Kinetic energy =
]O B L Mge V=0 =Y work required to

accelerate mass m
initially at rest to final

'V speed V
Ekinetic :I mV:-dV = L m V2
0
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Total (Mechanical)
Energy of the Satellite

- For a satellite orbiting in a gravity §\
field outside of the atmosphere (no N
external drag) there are no

dissipative forces acting, thus the

total energy of the satellite is a
constant throughout the orbit

2
MAE 5540 - Propulsion Systems 0
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Specific Energy

- Specific Energy ~ energy divided
by the mass

Er
m

2
£ = Hll [sz .G 1\14 m] = constant
U

- [V2 ) u] u= GM = planetary
= gravitational parameter

27
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Total Specific Energy
e First Calculate Radius of Curvature of Ellipse

semi-minor axis ’*

\I
apfocus b

|

/ a3

c
(<<0) /

"line of apsides"

semi-major axis perifocus

312 y
R=(C’ rp) —>r =a (l—e —>r+r.=2-a
T oaN1-& l+e-cos(v) “ 7
[(2 a—r )-r:|3/2
—>r,=2-a-r,>|R = r lp—ezp Y\ }
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Total Specific Energy .,
e Next Calculate Radius of Curvature of Ellipse at Perigee

semi-minor axis ’*

T I
apfocus b

I X
/ ra >|, rp v

c a Ll px
(<<0) /
C., 0 / |

"line of apsides" / ¢

perifocus

R _ [(2 ad— rpm'gee) . rperigee:l3/2 [(2 a—a- (1 . e)) .a- (1 _ e):|3/2 [az . (1 B 62 ):|3/2

- = =a(l1-¢°
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Total Specific Energy

2
€T = [ Ve T ] &t constant everywhere 1n orbit

2

e Now look at perigee condition force balance

€1 = constant
Iy

Vapo gee Vperigee

Fooriee = 0 — Centrifugal force = Gravitational force @ Apogee
V ] ? l’l' ) Rc .
Ri)erzgee — ; ,Ll N Vperigee2 — ; perigee N rperigee —a- (1 . e)

r r

Cperigee perigee perigee
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Total Specific Energy

2
€T = [ Ve T ] &t constant everywhere 1n orbit

€1 = constant
Iy

Vapo gee Vperigee

=0 — Centrifugal force = Gravitational force @ Apogee

% 2:u-a(l—e2)zﬂ-(1—e2):u.(1+e)(1—e):u.(1+e)
e at-(-ef  a-(1-e)’  a-(1-e)’  a-(1-e)

r

perigee
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Total Specific Energy

2
€T = [ Ve T ] &t constant everywhere 1n orbit

2

: . (1+
... at perigee conditions V. °= a El ?
a-(1—e

* Sub Into Energy Equation

Energy Equation /
Vperigeez_ H —e=— u'(1+e) _ U _ U ((14’6)_ 2 ):
2 e 2-a-(1—e) /(1 —e) 2a

(1-e) (1-e)
U .(1+e—2): U .(e—l)z_ﬁ
2a l-e 2a \1—e 2a
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Total Specific Energy

2
€T = [ Ve T ] &t constant everywhere 1n orbit

2

e Similarly @ Apogee condition force balance

€1 = constant

Vapogee Vperigee
7 0eee = 0 —> Centrifugal force = Gravitational force @ Apogee
¥ ogee = 4 (1+e)
Lo R p(re)(i-¢)_p(i-¢)
bosee  y? a-(1+e) a-(1+e)

apogoee
X o
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Total Specific Energy

2
€T = [ \2/ - T ] &t constant everywhere 1n orbit
... at perigee conditions y *_H (1=e)
P g.(1+e)
* Sub Into Energy Equation
Energy Equation
apogee H :8:H°(1_e)_ ¥) _ U (l—e—Zj:_i
2 7 pogee a-(1+e) a-(1+e) 2a \ l+e 2a

.QED

MAE 5540 - Propulsion Systems 5
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Total Specific Energy «

€1 = constant
I'a

Vapogee Vperigee

kinetic ~ potential kinetic ~ potential total
ENEITy  energy eNEIZy  energy energy
ET= -
voooR voow o
- 2 : -pengee - 2 ! -anyw here 22
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Orbital Energy Review

Total (Mechanical)
Energy of the Satellite

* For a satellite orbiting in a gravity
field outside of the atmosphere (no
external drag) there are no
dissipative forces acting, thus the
total energy of the satellite is 2
constant throughout the orbit

-0 -
= wy

MAE 5540 - Propulsion Systems 30
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* To Understand that ... we'll first have to show that
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Orbital Energy
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the orbital dynamics are a result of the balance between
kenetic and potential energy

2a

Ene

- Specifi ciny
1 l\_7 |2 1l

) I

Total Specific Specific
Specific Kinetic Potential

rey Enerey Enerey

MAE 5540 - Propulsion Systems



Stephen Whitmore



UtahState

FrHRoilTTwWw

INTechSnicS)edrenos S ce)

Engimeering

TOtaI S peC ifi C E ne rgy (concluded)

- Solving for V, the elliptical orbit
velocity magnitude is:

It's alive!
it's ALIVE!

MAE 5540 - Propulsion Systems

" uE L

- Newton referred to this equation
as the "vis-viva" equation

.... literally translated ... "it's alive”

- Extremely important relationship
shows that orbital speed is
inversely proportional to square

root of the orbital radius
38 |
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Orbital Energy
eps =0 =
* To Understand that ... we'll first have to show that
the orbital dynamics are a result of the balance between
kenetic and potential energy
- Specifically eps <0
W |‘7 F I
2a > T
Total Specific Specific
Specific Kinetic Potential
Energy Enerey Enerey
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Trajectories:

o If we increase the current circular orbit "V"
by a factor of ¥Z; then the velocity becomes
too great for the planet to contain the orbit

 Satellite escapes the planet on a parabolic
trajectory

MAE 5540 - Propulsion Systems
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What is a Parabola?

12=(2 p +xJ

e Cartesian form of the equation

\ Directrix

. 12 = X2 4 y?

2p+xf=x2+y2 | f>v</
J R

y2=4p[X+p]

0,0)
—X
% p

—

» A parabola is the locus of all points
equidistant from a fixed point (focus)
and a line (Directrix)

MAE 5540 - Propulsion Systems
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Postscript:Escape Velocity

What happens when a->o in an elliptical orbit?

a Semi-major axis:

mD

e: orbital eccentricity=e =

y .
b: semi-minor axis: b? = 2| 1 - ¢] | perifocus o= ayf1-Bf -ae
o
=
I
- A LU}
ey d —> 0

v: true anomaly=> Angle from
perapsts to satellite

a[l —cz]

(v): orbital radius=> (V) =

:1 +e cos [-v|]]

MAE 5540 - Propulsion Systems
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Postscript II: Escape Velocity  onta)

What happens when a-> in an elliptical orbit?

R =

q—> 00

gut @] 1-€=all-e][l+e

R =

d—w

MAE 5540 - Propulsion Systems

all-e?]

| + ecos[v]

q— 0

I
1111 e —> |

all- e

| + ecos|v]

. d — 0
1m
e — |
|

"Indeterminant”

- 1
- Rpeﬁgee[ I+e

_ 2 Rperigee /
I+ cos [ v]
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Postscript:Escape Velocity conq

* a->co iImplies an "open" parabolic trajectory

R - 2 Rperi gee

e Locos [ V] o

40—

Vi pi -3;] .

!
7
;I“

20 —

40 —

-0 —

-B0 = I I | 1 l I
-4Q =20 Q 20 4Q 60 EQ

MAE 5540 - Propulsion Systems
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How about for a \

parabolic trajectory?

«—a-->

e

kinetic  potential total
eneray energy energy
ET =
V2 LT A
- I _ 2 a =0
lim a—

MAE 5540 - Propulsion Systems

43




UtahState INtechanicsladhienospIce,

UNIVERSITY

How about for a
parabolic trajectory?

«—a->

A

e

 Orbital Energy 1s with regard to an escape trajectory!

*Circular, Elliptical Orbit 2> & <0
*Parabolic (Escape) Trajectory 2> e =0
*Hyperbolic Trajectory 2> & >=0

Engimeering

See Appendix 2.3.2 for Hyperbolic Trajectory Proof
44
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Vis-Viva Equation for All the Conic-Sections

Circle: [r=a| = \ ,\/ %'La %
i
Parabola: r:[1+30§(v)]— = V_ﬁ/u[%_%]_: 2Tp.
Hyperbola: | r = 1+:::cos J=> V = M[%‘*la]

See Appendix 2.3.2 for Hyperbolic Trajectory Proof

MAE 5540 - Propulsion Systems 45
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Homework 3

Parabolic and Hyperbolic Trajectories

20

40

30

20

10

-10

=20

=30

-40

=50

] abolic appioach
- n AVII

- Hyperbolic departure
- “\
~l | | | | | | |
-20 -10 0 10 20 20 40 50

MAE 5540 - Propulsion Systems
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Parabolic and Hyperbolic Trajectories (cont'd)

e United Federation of Planets starship Excelsior
approaches Klingon outpost Altair 5 on a
covert retaliatory bombing mission

* A cloaking device uses enormous energy & Warp
drive is non-operational with the cloak engaged

e All maneuvering must be done on impulse power
alone

* The Excelsior uses a gravity assisted parabolic
approach trajectory to Alfair 5 in order to save
on waning impulse power and insure a stealthy
approach

MAE 5540 - Propulsion Systems ‘ 47
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Parabolic and Hyperbolic Trajectories (cont'd)

e After dropping photo-torpedos, Captain Checkov
wants to get out the sphere of influence (SOI) ofAltair 5
as fast as possible without being spotted

e The Excelsior has enough impulse power left for one
big burn before, having to recharge the dilithium crystals

* The best way to "get out of town fast" is to fire
impulse engines at closest approach to Altair 5 -- taking
advantage of the gravity assist to give the highest
approach speed without using impulse power and

then use impulse power to depart

on a hyperbolic trajectory at angle of 45 degrees

e What is the "Delta-V" required to depart on a
Hyperbolic trajectory with an asymptotic
departure angle of 45 degrees 48
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Homework:

Parabolic and Hyperbolic Trajectories (cont'd)

e Hint 1: For a Parabolic trajectory

I’ is measured from the parabolic focus to
the location of the Excelsior

e Hint 2: For a Hyperbolic trajectory

I’ is measured from the right (perifocus) focus to
the location of the Excelsior

MAE 5540 - Propulsion Systems »
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Homework:

Parabolic and Hyperbolic Trajectories (concluded)

e Hint 3: For a Parabolic to Hyperbolic
trajectory transfer
'

'AV' =V, -V, =V
P P Vp

e Hint 4: At closest apprach, the distance
from the parabolic focus to the Excelsior
must equal the distance from the Hyperbolic
right focus to the Excelsior

I

* Your answer should be expressed in terms
1 and rmin (closest approach distance)

MAE 5540 - Propulsion Systems >0
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Appendix 2.3: Total Specific Orbital Energy
Alternate Derivation

1
MAE 5540 - Propulsion Systems >
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€1 = constant

Vapogee Vperigee
I'a
- But
Kepler's Second Law: 5

S0, =20, = 0= —
2 = constant ¢ 00 =Ty O =1 o=y

angular momentum

- Substituting in for (J3 and rearranging

- 1 [ 2
Iy - Iy r
TR — p(v) LT ()
T ™

S _
rp
rz

(7)p Tp (')p

MAE 5540 - Propulsion Systems 2
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Total Specific Energy coq

€1 = constant

Vapo gee Vperigee

53
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UNIVERSITY Total Specific Energy coq

€1 = constant

Vapogee Vperigee

r,+r,=all-e[+afl+e]= 2a

U

ralp=a[l-e]a[l+e]= a2[1 - €?]

, w [1+eF

P T @ eP1e?] .

MAE 5540 - Propulsion Systcies |




i Total Specific Energy (contd)

&1 = constant

Vapogee

- Re-evaluating the
total specific energy.....

MAE 5540 - | _ 2 rp 55
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Total Specific Energy coq

€t = constant

Vperigee

*... and ..... t_he result is )
o [ )
: |l -e
; _{Vz M} (@ [l-ef[1 - ¢ !l o u
IV perigee | 2 a [l-¢]
| [1+eP ) |_-wfl-e J] | w
L 2al[1-¢2] [l-¢]] 2al[l-e2]| | 2als
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Appendix 2.3.2: Total Specific Orbital Energy
for Hyperbolic Trajectory

MAE 5540 - Propulsion Systems o7
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How about for a
hyperbolic trajectory?

e Conservation of Energy and Angular Momentum
still hold .... So

i kinetic potential )
energy energy
ET =
vz R
L2 g —perigee
..... and

Vberigee = Ip ®p

MAE 5540 - Propulsion Systems o8
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Hyperbolic Energy

e Recall, from the “First Law” derivation

u I}
wr:m[1+Bcos(v)]=>B:‘u‘ rlp'l

or=|1 (‘Iz 1-1)cos(v)
(I
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Hyperbolic Energy (continued)
* At Perigee, V=0
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kinetic potential
* Substituting energy energy
into energy (hyp) — 7
equation “ I “2 w
I Ty
2|71, P
2
_ 4 [ehyp . 1} _
And for a I'p — —
hyperbola [ 1+ ehyp COS(O) }

a [epyp + 1]enyp - 1]
[ L+ Chyp }

=alepyp - 1]
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Hyperbolic Energy (continued)

 Substituting into energy equation

kinetic potential
‘ ’(Il‘lyp) _ CIICTEY energy
_ b uw
I Ly o
P
alepy,- 1]
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Hyperbolic Energy (continued)

e But from the General Form for the Conic section

U
o

I‘(V):[1+Bcos(v)} —
U
u Tp 1=ehyp
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Hyperbolic Energy (continued)

Ui

(hyp) — — -
r 3{ E€hyp - } [1 + €pyp COS (OH

J
1T = ua| ef, -1

Evaluating at perigee

4
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Hyperbolic Energy (continued)

* Substituting into the Energy equation

kinetic potential
. (hyp) _ €nergy energy
T _ _
LI
=T a|@pyp - 1]
alew 1]

17 = paled, -]
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Hyperbolic Energy (concluded)

(hyp)_ 1 M [ e’zl.vp '1} W
T 2 .2 ehyp - 1}2 aehyp - 1]

p Hafenypt ljenyp-1)  w
: a2 [epyp - 1]2 2 |enyp - 1]
e
i [ehypt]] 1 _“{ 3 é] [

1 _
2 alepyp-l| ajenypl| ajepypl| |22
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