Medicinited & Flarospeces Engineering

Intro to Astrodynamics

Introduction to Astrodynamics: Gravitational Fields, Potential and Kinetic Energy, and the Vis-Viva Equation

MAE 5540 - Propulsion Systems

Kinematics versus Dynamics

• Up to now we have mostly dealt with orbital motions from a kinematics point of view ... I.e. Kepler's laws Were used simply as descriptors of orbital motion

Machenleel & Farospece

Kepler

... but there are no Physics (I.e. Isaac Newton) Involved

• Kepler derived his laws of planetary motion by Empirical observation only.

Medicinies & Flarospeces Engineering

Summary: Kepler's Laws

• Kepler's First Law: In a two body universe, orbit of a satellite is a conic section with the Earth centered at one of the focii

UtahState

Kepler's Laws (cont'd)

• **Kepler's Third Law:** In a two body universe, square of the period of any object revolving about the Earth is in the same ratio as the cube of its mean distance

Medienteel & Flarospece Engineering

Time of Flight Graphs (cont'd)

Medicinfect & Flarospece Engineering

Propagation of Orbital Position

Mechaniles & Ferospace Engineering

Velocity Vector, Elliptical Orbit

Medicinical & Flarospers Engineering

UNIVERSITY

Medicinited & Flarosperes Engineering

Kepler's third law(corollary)

 In the process of demonstrating Kepler's third law, we have also indirectly demonstrated that, for an elliptical orbit the orbital speed (Magnitude of the Velocity Vector) is

$$\overline{\mathbf{V}}|^2 = \frac{\mathbf{I}^2}{\mathbf{a}[1-\mathbf{e}^2]} \left[\frac{2}{\mathbf{r}} - \frac{1}{\mathbf{a}}\right] = \mathbf{\mu} \left[\frac{2}{\mathbf{r}} - \frac{1}{\mathbf{a}}\right]$$

UNIVERSITY

Isaac Newton

Newton

• Sir Isaac Newton used his new calculus and laws of motion and gravitation to show that Kepler was right.

• One day in 1682 he came up to his friend, Edmund Halley, and casually mentioned to him that he'd proved that, with a $1/r^2$ force law like gravity, planets orbit the sun in the shapes of conic sections.

• This undoubtedly took Halley aback, as Newton had just revealed to him the nature of the Universe (at least the Universe as it was known then).

MAE 5540 - Propulsion Systems

Medienteel & Feroepeos Engineering

Mediantel & Flarcepees Engineering

UNIVERSITY

Newton ...

•Halley then pressed Newton to publish his findings, but he realized that he'd forgotten the proof.

• After struggling to remember how he had proved the t heorem, he published his work and it later appeared in full form in his classic work: *Philosophiae Naturalis Principia Mathematica* -- commonly known as the Principia -- published in1687.

• OK ... let walk down Newton's path to enlightenment!

Medicination Considerations Engineering

Gravitational Physics

 Now by introducing a bit of "gravitational physics" we can unify the entire mathematical analysis

Medicinited & Flarospece Engineering

You've seen it before

Gravitational Physics

 Constant G appearing in Newton's law of gravitation, known as the universal gravitational constant.

Numerical value of G

$$G = 6.672 \text{ x } 10^{-11} \frac{\text{Nt-m}^2}{\text{kg}^2} = 3.325 \text{ x } 10^{-11} \frac{\text{lbf-ft}^2}{\text{lbm}^2}$$

Medienteele Flerosperes Engineering

UNIVERSIT **Gravitational Potential** Energy ∞ •Gravitational potential energy equals the amount of energy released when the Big Mass M pulls the small mass *m* at infinity to a location r in the vicinity of a mass M Energy of position m $P_{E_{grav}} \equiv E_{released} = \int_{\infty}^{1} \mathbf{F} \cdot d\mathbf{r} =$ /**r** $\frac{G M m}{r^2} dr = -G M m \left[\frac{1}{r} - \frac{1}{\infty}\right] = \left[-\frac{G M m}{r}\right]$ 19 MAE 5540 - Propulsion Systems

UtahState

Medicantes Crarceptees Engineering

"Work and Potential Energy"

Work can be loosely defined as the ability of an applied force to do something useful

Medicinated & Flarospece Engineering

Mechanical "Work"

 Inner product of the applied Force vector and the change in the position vector caused by the applied force

Madhanlæl & Flarcepees Engineering

UtahState

Medicinies & Flarospece Engineering

 ∞

m

UNIVERSITY

Total (Mechanical) Energy of the Satellite

• For a satellite orbiting in a gravity field outside of the atmosphere (no external drag) there are no dissipative forces acting, thus the total energy of the satellite is constant throughout the orbit

litahState

Medicinies & Flarospece Engineering

UNIVERSITY

Total Specific Energy

• First Calculate Radius of Curvature of Ellipse

Medicinies & Flarospers Engineering

UNIVERSITY

Total Specific Energy (2)

• Next Calculate Radius of Curvature of Ellipse at Perigee

Medicinies & Flarospers Engineering

UNIVERSI **Total Specific Energy** (3) $\varepsilon_{\rm T} = \left| \frac{V^2}{2} - \frac{\mu}{r} \right|$ $\varepsilon_{\rm T}$ constant everywhere in orbit • Now look at perigee condition force balance $\varepsilon_{\rm T} = {\rm constant}$ Vapogee / perigee \mathbf{r}_{a} $\dot{r}_{perigee} = 0 \rightarrow \text{Centrifugal force} = \text{Gravitational force} @ Apogee$

Medicaler Ferospece Engineering

Total Specific Energy (4)

- $\varepsilon_{\rm T} = \left| \frac{{\rm V}^2}{2} \frac{\mu}{{\rm r}} \right| \qquad \varepsilon_{\rm T} \text{ constant everywhere in orbit}$
- Now look at perigee condition force balance

UNIVERSIT

Medicinated & Flarospece Engineering

Total Specific Energy (5)

 $\varepsilon_{\rm T} = \left[\frac{V^2}{2} - \frac{\mu}{r}\right]$

UtahState

 $\varepsilon_{\rm T}$ constant everywhere in orbit

... at perigee conditions

$$V_{perigee}^{2} = \frac{\mu \cdot (1+e)}{a \cdot (1-e)}$$

• Sub Into Energy Equation

Energy Equation

$$\frac{V_{perigee}^{2}}{2} - \frac{\mu}{r_{perigee}} = \varepsilon = \frac{\mu \cdot (1+e)}{2 \cdot a \cdot (1-e)} - \frac{\mu}{a \cdot (1-e)} = \frac{\mu}{2a} \cdot \left(\frac{(1+e)}{(1-e)} - \frac{2}{(1-e)}\right) = \frac{\mu}{2a} \cdot \left(\frac{1+e-2}{1-e}\right) = \frac{\mu}{2a} \cdot \left(\frac{e-1}{1-e}\right) = -\frac{\mu}{2a}$$

$$\frac{\mu}{MAE 5540 - Propulsion Systems}$$

$$32$$

Machanical & Flarospace

UtahState UNIVERSIT **Total Specific Energy** (6) $\varepsilon_{\rm T} = \left| \frac{V^2}{2} - \frac{\mu}{r} \right|$

• Similarly @ Apogee condition force balance $\varepsilon_{\rm T} = {\rm constant}$ Vapogee Vperigee \mathbf{r}_{a} $\dot{r}_{apogee} = 0 \rightarrow \text{Centrifugal force} = \text{Gravitational force} @ Apogee$ $\rightarrow r_{apogee} = a \cdot (1+e)$ $V_{apogee}^{2} = \frac{\mu \cdot R_{c_{apogee}}}{r_{apogee}^{2}} = \frac{\mu \cdot (1+e)(1-e)}{a \cdot (1+e)^{2}} = \frac{\mu \cdot (1-e)}{a \cdot (1+e)}$ 33 MAE 5540 - Propulsion Systems

 ε_{T} constant everywhere in orbit

Medicinited & Flarospece Engineering

Total Specific Energy (5)

 $\varepsilon_{\rm T} = \left[\frac{{\rm V}^2}{2} - \frac{\mu}{{\rm r}}\right]$

UtahStat

UNIVERSIT

 $\varepsilon_{\rm T}$ constant everywhere in orbit

... at perigee conditions $V_{apogee}^2 = \frac{\mu \cdot (1-e)}{a \cdot (1+e)}$

• Sub Into Energy Equation

Medicinites Clarospece Engineering

m`

œ

UNIVERSITY

Orbital Energy Review Total (Mechanical) Energy of the Satellite

М

• For a satellite orbiting in a gravity field outside of the atmosphere (no external drag) there are no dissipative forces acting, thus the total energy of the satellite is constant throughout the orbit

Medicination Considering

Medicinies & Flarospers Engineering

Total Specific Energy (concluded)

 Solving for V, the elliptical orbit velocity magnitude is:

 Newton referred to this equation as the "vis-viva" equation

.... literally translated ... "it's alive"

• Extremely important relationship shows that orbital speed is inversely proportional to square root of the orbital radius

MAE 5540 - Propulsion Systems

Medicinies & Flarospece Engineering

UNIVERSITY

Postscript:Escape Velocity

What happens when $a \rightarrow \infty$ in an elliptical orbit?

Postscript:Escape Velocity (cont'd)

• a->∞ implies an "open" parabolic trajectory

UtahState

• Orbital Energy is with regard to an escape trajectory!

•Circular, Elliptical Orbit $\rightarrow \varepsilon_T < 0$ •Parabolic (Escape) Trajectory $\rightarrow \varepsilon_T = 0$ •Hyperbolic Trajectory $\rightarrow \varepsilon_T >= 0$

See Appendix 2.3.2 for Hyperbolic Trajectory Proof

UNIVERSITY

Medicinical & Flarospece Engineering

Vis-Viva Equation for All the Conic-Sections

Circle:
$$\mathbf{r} = \mathbf{a} \Rightarrow$$

Ellipse: $\mathbf{r} = \frac{\mathbf{a} \begin{bmatrix} 1 - \mathbf{e}^2 \end{bmatrix}}{\begin{bmatrix} 1 + \mathbf{e} \cos(\mathbf{v}) \end{bmatrix}} \Rightarrow$
Parabola: $\mathbf{r} = \frac{2 p}{\begin{bmatrix} 1 + \cos(\mathbf{v}) \end{bmatrix}} \Rightarrow$
Hyperbola: $\mathbf{r} = \frac{\mathbf{a} \begin{bmatrix} \mathbf{e}_{hyp}^2 - 1 \end{bmatrix}}{\begin{bmatrix} 1 + \mathbf{e}_{hyp} \cos(\mathbf{v}) \end{bmatrix}} \Rightarrow$
 $\mathbf{V} = \sqrt{\mu \begin{bmatrix} \frac{2}{r} - \frac{1}{\infty} \end{bmatrix}} = \sqrt{\frac{2\mu}{r}}$
 $\mathbf{V} = \sqrt{\mu \begin{bmatrix} \frac{2}{r} - \frac{1}{\infty} \end{bmatrix}} = \sqrt{\frac{2\mu}{r}}$

See Appendix 2.3.2 for Hyperbolic Trajectory Proof

Medicinites Considering

UNIVERSITY

Homework 3

Parabolic and Hyperbolic Trajectories

46

Medicinies Crarospers Engineering

UNIVERSITY

Homework

Parabolic and Hyperbolic Trajectories (cont'd)

• United Federation of Planets starship Excelsior approaches Klingon outpost Altair 5 on a covert retaliatory bombing mission

• A cloaking device uses enormous energy & *Warp drive* is non-operational with the cloak engaged

• All maneuvering must be done on *impulse power* alone

• The *Excelsior* uses a gravity assisted *parabolic* approach trajectory to *Altair 5* in order to save on waning impulse power and insure a stealthy approach

UNIVERSITY

Parabolic and Hyperbolic Trajectories (cont'd)

- After dropping photo-torpedos, Captain Checkov wants to get out the *sphere of influence* (SOI) of *Altair 5* as fast as possible without being spotted
- The *Excelsior* has enough impulse power left for *one* big burn before, having to recharge the dilithium crystals

• The best way to "get out of town fast" is to fire impulse engines at closest approach to Altair 5 -- taking advantage of the gravity assist to give the highest approach speed without using impulse power and then use impulse power to depart on a hyperbolic trajectory at angle of 45 degrees

• What is the "*Delta-V*" required to depart on a *Hyperbolic* trajectory with an asymptotic departure angle of 45 degrees

Medicinies & Flarospers Engineering

Homework:

Parabolic and Hyperbolic Trajectories (cont'd)

• Hint 1: For a Parabolic trajectory

 Γ is measured from the parabolic *focus* to the location of the *Excelsior*

• Hint 2: For a Hyperbolic trajectory

r is measured from the *right (perifocus) focus* to the location of the *Excelsior*

Medicinated & Flarospece Engineering

UNIVERSITY

Homework:

Parabolic and Hyperbolic Trajectories (concluded)

• Hint 3: For a Parabolic to Hyperbolic trajectory transfer

$$\Delta V'' = V_h - V_p = V_p \left[\frac{V_h}{V_p} - 1 \right]$$

• Hint 4: At closest apprach, the distance from the *parabolic focus* to the *Excelsior* must equal the distance from the *Hyperbolic right focus* to the *Excelsior*

• Your answer should be expressed in terms μ and r_{min} (closest approach distance)

Medicinical & Flarospece Engineering

Appendix 2.3: Total Specific Orbital Energy Alternate Derivation

Medienteel & Flarospece Engineering

• Solving for ω_p^2

$$\omega_p^2 = 2 \,\mu \left[\frac{r_a}{r_p} \right]^2 \frac{1}{\left[r_p + r_a \right]} \left[\frac{1}{r_a r_p} \right]$$

MAE 5540 - Propulsion Systems

UtahState

UNIVERSITY

Appendix 2.3.2: Total Specific Orbital Energy for Hyperbolic Trajectory

Mediciles Clarospece Engineering

How about for a hyperbolic trajectory?

• Conservation of Energy and Angular Momentum still hold So

Machanical & Flarospace UtahState Engineering UNIVERSITY Hyperbolic Energy • Recall, from the "First Law" derivation $\omega \mathbf{r} = \frac{\mu}{|\mathbf{I}|} [1 + B\cos(\mathbf{v})] \Rightarrow B = \frac{|\mathbf{I}|^2}{\mu} \frac{1}{r_p} - 1$ $\omega \mathbf{r} = \frac{\mu}{|\boldsymbol{I}|} \left[1 + \left(\frac{|\boldsymbol{I}|^2}{\mu} \frac{1}{r_p} - 1 \right) \cos(\boldsymbol{v}) \right]$ 59

Mechanical & Ferospece Engineering

Hyperbolic Energy (continued)

• At Perigee, V=0

UtahState

UNIVERSITY

Medicination Considerations Engineering

Hyperbolic Energy (continued)

• Substituting into energy equation

UtahState UNIVERSITY

Medicinies Crarospers Engineering

Hyperbolic Energy (continued)

• But from the General Form for the Conic section

UtahState UNIVERSITY

Mechanical & Flarospaces Engineering

Hyperbolic Energy (continued)

Evaluating at perigee

 $r_{p}^{(\text{hyp})} = a \begin{bmatrix} e_{hyp} - 1 \end{bmatrix} = \frac{\mu}{\begin{bmatrix} 1 + e_{hyp} \cos(0) \end{bmatrix}}$ $\downarrow \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}^{2} = \mu a \begin{bmatrix} e_{hyp}^{2} - 1 \end{bmatrix}$

UtahState

Medicinfect & Flarospece Engineering

Hyperbolic Energy (continued)

• Substituting into the Energy equation

Medicinical & Flarospeces Engineering

