FLIGHT PATH EQUATIONS OF MOTION
(Rotating Oblate Earth and Zonal Gravity Model)

The first-order flight path equations of motion relative to a rotating oblate Earth and a fourth-
order zonal gravity model are as follows:
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r = geocentric radius

v = speed

y = flight path angle

0 = geocentric declination

= longitude (+ cast)

w = flight azimuth (+ clockwise from north)
S = bank angle (+ for a right turn)

a = angle of attack

r, = Earth equatorial radius
@, = Earth inertial rotation rate

1 = Earth gravitational constant
L

= aerodynamic lift force = % pv:C,S

D = aerodynamic drag force = %p v:C,S
T = propulsive thrust
m = spacecraft mass
C, = lift coefficient (non-dimensional)
Cp = drag coefficient (non-dimensional)
S = aerodynamic reference area
p = atmospheric density = f (k)
h = geodetic altitude

The bank angle is the angle between the lift vector and the projection of the lift vector on the
plane formed by the vehicle’s relative velocity vector and the local vertical direction. Bank angle
is measured positive clockwise looking forward in the direction of motion.

The components of the gravity vector are determined from the gradient of the potential function
according to
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For a zonal-only gravity model of order four, the Legendre functions and their partial derivatives
are given by
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P, =%(55in3¢—3sin¢)
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Load Factors

“total” (wind axis coordinate system)

\/(L+Tsina)2 +(D—Tcosa)2
n=
w

axial component (body frame coordinate system)

_—Lsina+Dcosa—-T
w

normal component (body frame coordinate system)

Lcosa+ Dsina
n =
w

Axial and Normal Coefficients (body axis coordinate system)
C,=-C,sina+C,cosa—-T
Cy=C,cosa+C,sina
Lift and Drag Coefficients (body axis coordinate system)
C,=-C,sina+C,cosx
Cp,=C,cosa+C,sina
Axial and Normal Force Components (body axis coordinate system)

1 G
f==pV3S: 0
5P
-C,

Steady-State Flight Conditions
Tcosa—D—-Wsiny =0

Tsma+L-Wcosy =0
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Aerodynamic Characteristics

General Form of Drag Polar

Cp=C, +K|C,
Lift-to-Drag Ratio
el _C_ G
D C, Cp+kC|

Maximum Lift-to-Drag Ratio

dE _(Cp, +kC})-C, (nkC;™) .

E" = = 5
dc, (CD(, +kC'Z)
C
C* = Dy
L k(n-1)
C: = nCp,

In general,

For a parabolic drag polar (n = 2) ,

Cp=C, +kC}
where
C, = drag coefficient
p, = drag coefficient at 0" angle-of-attack
C, = lift coefficient
k = constant
and
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C, =2C,, = drag coefficient at maximum L/D

C, =,/Cp, 'k = lift coefficient at maximum L/D

E = (—QLJ 1. maximum L/D

Cy 2,JkC,,

Chapman’s Stagnation Point Heat Rate Equation

g da_17.600( v e ( BTU )
dt R, \ v o ft* —sec

nose radius (feet)

relative velocity at the spacecraft location (feet/second)

"local circular velocity" at the Earth's surface = \[E (feet/second)
re

atmospheric density at the spacecraft location (slugs/feet’)

= atmospheric density at the Earth's surface (slugs/feet’)

gravitational constant of the Earth (feet’/second®)

radius of the Earth (feet)
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Crossrange and Downrange Calculations (Spherical Earth)

The crossrange angle is determined from the following expression:
siny = —siny, sing, cosg, cos AL —cosy, cosd, sin A4 +siny, cosg, sing,
The downrange angle is determined from the following three equations:
sin 4 = —cosy, sin @, cosd, cos AL +siny, cosg, sin AL + cosy, cos g, sin &
COS 44 = COS @, COS @, COSAA +sin g, sing,
= tan™ (sin s, cos p)

where
¢ = geocentric latitude of the initial point

w, = flight azimuth at the initial point
¢, = geocentric latitude of the final point
M=y~

A, = east longitude of the initial point

A, = east longitude of the final point

The crossrange distance d, and downrange distance d, are determined from

where 7, is the radius of the Earth. The flight azimuth is measured positive clockwise from
north. Also note that the inverse tangent above is a four quadrant form.
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UTILITY TRANSFORMATIONS
Conversion of ECI state vector to spherical (ADBARV) coordinates

The components of the ADBARV coordinate system are as follows:

Alpha = right ascension

Delta = geocentric declination
Beta = conjugate flight path angle
A = azimuth

R = position magnitude

V = velocity magnitude

The following diagram illustrates the geometry of the ADBARYV coordinates. In this picture ¢ is
the right ascension, & is the geocentric declination and f is the conjugate flight path angle.
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The mathematical relationships between ADBARV elements and the components of the ECI
position and velocity vectors are as follows:

_ 2 2 2
r=Nri
2

v=Vi+ v+
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A=tan™ [r(rxvy - ryvx),ry (ryvZ -y, ) -7, (r:vx - rxvz)]
Conversion of spherical (ADBARV) coordinates to ECI state vector

The inertial position and velocity vectors can be determined from the ADBARYV elements with
the following set of equations:

¥, =¥ COSO cosa

r, =rcoso sina
r.=rsind
% =v[cosa(—cosAsin,Bsin5+cos,b’cosé‘)—sinAsin,Bsina]

v, = v[sina(—cos Asin fsin & + cos fcos S ) + sin Asinﬂcosa]

b

v, =v(cos AcosS sin B +cos S cosS)

The inertial speed can also be computed from the following expression

« 2
v, = \/v2 +2vrwcosysiny cosS +r’w’ cos’ §

The inertial flight path angle can be computed from

cos v2cos’ ¥ + 2vracosy cosiy cos S + rlw’ cos’ §
7/, =
’ v +2vr@cos y cosy cos S + r’ @’ cos” &

The inertial azimuth can be computed from

VCOSy COSY +Fracosd

COSY =T — 2.2 2
v eos” ¥ +2vr@cosy cosy cosd +r @ cos” o

where all coordinates on the right-hand-side of these equations are relative to a rotating Earth.
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Conversion of geocentric radius and declination to geodetic altitude and latitude

The following diagram illustrates the geometric relationship between geocentric and geodetic
coordinates for an oblate spheroid.
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In this diagram, 0 is the geocentric declination, ¢ is the geodetic latitude, r is the geocentric
radius, and £ 1s the geodetic altitude. The exact mathematical relationship between geocentric
and geodetic coordinates is given by the following system of two nonlinear equations

(c+h)cosg—rcoséd =0
(s+h)sing—rsind =0
where the geodetic constants ¢ and s are given by

Teq

JU-(2f - £*)sin®

Cc =

s:c(l—f)2

and r,, is the Earth equatorial radius (6378.14 kilometers) and f is the flattening factor for the
Earth (1/298.257).
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The geodetic latitude is determined using the following expression:

¢ =5+(Sin25jf+K—-1-2—_L]sin45}f2
p p- 4p

The geodetic altitude is calculated from

}2:(;_1)‘*{(1‘_(52052—5)](+K$~%J(1—cos45)}]ﬂ}

In these equations, p is the geocentric distance of the vehicle, #=h/r

eq

andr=p/r,.

Conversion of geodetic latitude and altitude to geocentric radius and geocentric
declination

The equations for this coordinate conversion are as follows:

B —sin2¢ —sin2¢ 1 1 ) )
5—¢+( h+1 )er 2(ﬁ+1)2+ 4(f2+1)2+4(f2+1) sndg it

and

A (7 20— 1 1 5
p=(h+1)+(3052¢]f+ WJFR- (I—cosdg)} f

where the geocentric radius r and geodetic altitude 4 have been normalized by p=r/r,, and

h=hlr

.g » Tespectively, and 7, is the equatorial radius of the Earth.
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