
MAE 5540 - Propulsion Systems

Section 5, Lecture 1:
Review of  Idealized Nozzle Theory

Summary of Fundamental Properties and 
Relationships

Sutton and Biblarz, Chapter 3

Stephen Whitmore
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Fundamental Properties of Supersonic
and Supersonic Flow
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… Hence the shape of the rocket Nozzle
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What is a NOZZLE
• FUNCTION of rocket nozzle is to convert thermal energy
in propellants into kinetic energy as efficiently as possible

• Nozzle is substantial part of the total engine mass. 

• Many of the historical data suggest that 50% of solid rocket failures
stemmed from nozzle problems.

The design of the nozzle must trade off:
1. Nozzle size (needed to get better performance) against nozzle weight
penalty.

2. Complexity of the shape for shock-free performance vs. cost of
fabrication
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Temperature/Entropy
Diagram for a Typical Nozzle

Isentropic
Nozzle

Stephen Whitmore
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Stagnation Temperature, Pressure for 
Adiabatic, Isentropic Flow of a Calorically Perfect Gas

• Stagnation temperature is a measure of the 
Kinetic Energy of the flow Field.

• Stagnation  (total) pressure:
Constant throughout Isentropic 
flow field

• In Isentropic Nozzle, T0, P0 are constant

Stephen Whitmore
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Nozzle Mass Flow per Unit Area

• maximum
Massflow/area
Occurs when 
When M=1
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Choking Massflow Equation
• maximum
Massflow/area
Occurs when 
When M=1

• Effect known 
as Choking in a 
Duct or Nozzle

• i.e. nozzle will
Have a mach 1 
throat
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Isentropic Nozzle Flow: Area Mach Relationship

• Consider a “choked-flow”
Nozzle … (I.e. M=1 at Throat)

• Then comparing the massflow
/unit area at throat to some
Downstream station

Stephen Whitmore
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Isentropic Nozzle Flow: Area Mach Relationship
• A/A* Directly related to Mach number

• “Two-Branch solution: Subsonic, Supersonic

• Nonlinear Equation requires
Numerical Solution

• “Newton’s Method”

Stephen Whitmore
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Engine Thrust Model (revisited)
• Steady, Inviscid, One-Dimensional Flow Through Ramjet



MAE 5540 - Propulsion Systems

Rocket Thrust Equation, revisited

• Thrust + Oxidizer enters combustion
Chamber at ~0 velocity, combustion
Adds energy … High Chamber pressure
Accelerates flow through Nozzle
Resultant pressure forces produce thrust

Stephen Whitmore
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Thrust Coefficient
For an isentropic nozzle

• CF is a function of Nozzle pressure ratio 
and back pressure only
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Thrust Coefficient Summary
Ideal  Thrust  Coefficient
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Characteristic Velocity, C*

• Let nozzle expand infinitely in Vacuum…. 
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• The characteristic velocity is a 
figure of thermo-chemical merit 
for a particular propellant and 
may be considered to be
Indicative of the combustion 
performance of propellants.

• Propellants that burn Hot
and have a low product Molecular
weight … best C*

Define …. 
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C* of Given Propellants

Stephen Whitmore
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Maximum Isp of a Combustion Process
• from  Earlier

• Assuming an infinitely expanded nozzle in a vacuum, Maximum Achievable Specific Impulse for
Selected propellants is 
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Performance Parameter Summary
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Example Performance Calculations

Stephen Whitmore


Stephen Whitmore
c*
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Real Rocket Loss Coefficients
1. Combustor /Nozzle efficiency correction coefficient à h*

2. Nozzle divergence correction coefficient à l

3. Chamber pressure correction coefficient à xp

4. Nozzle discharge correction coefficient à xd

• Manufacturers often use empirically determined “fudge factors” to model 
engine/rocket motor losses

“adjustments” to de Laval Flow Equations
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Combustor Efficiency Correction Coefficient

-- Combustion inefficiency and heat losses through the 
chamber wall both tend to produce a lower chamber 
pressure than predicted by theory.

• Squared Efficiency Proportional to ratio of True-to-Actual Flame 
Temperature
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Combustor Efficiency Correction Coefficient (cont’d)

… What factors can cause T0 to Drop in Combustor

1) Heat Loss thru Combustor walls
2) Friction (Very Small in Combustor)
3) Combustion Process Efficiency / mixture ratio
4) Typical Values … 85-99%

• Combustion
• Transport
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Nozzle Divergence Correction Coefficient

• Quasi-1-D analysis assumes
exit flow leaves parallel
to longitudinal axis of the nozzle

• In reality … this rarely happens
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Nozzle Divergence Correction Coefficient (cont’d)

• Look at mass flow across spherical exit surface

dS
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Nozzle Divergence Correction Coefficient (cont’d)

• Look at axial momentum flow across spherical exit surface
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Nozzle Divergence Correction Coefficient (cont’d)
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Nozzle Divergence Correction Coefficient (cont’d)

Actual
Momentum 
Thrust

Momentum 
Thrust of 
idealized 
Nozzle

Application of
Correction 
Factor
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Chamber Pressure Correction Coefficient

--Models effects of transient
startup, stagnation pressure loss
due to non-zero Chamber Mach Number

• Rocket Engines with short burn times typically 
have a significant portion of the total impulse 
resulting from the pressure start-up or tail-off 
phases of the burn, when the chamber pressure is 
well below the steady-state operating pressure level. 

• Total delivered impulse is less than impulse based
on steady-state calculations. 

• Use mean Stagnation pressure through Burn as 
correction factor
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Chamber Pressure Correction Coefficient(cont’d)

• Define

• Look At
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Chamber Pressure Correction Coefficient(cont’d)

• Alternate Formulation
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Chamber Pressure Correction Coefficient (cont’d)

• But Ve ,            are  independent of P0 (for isentropic Nozzle)

• Mathematically identically to previous
Formula … but easier to use

• Typical Values … 95-99.5%
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Pchamber Correction, SSME Example, 
revisited

• Assume

= 0.995

=1.525

Shuttle has
A very long
Burn time
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Pchamber Correction, 
Chimaera Rocket Example

• Expected Thrust ~ 2300 lbf
• Expected Pchamber ~ 450 psia
• A* ~ 1.25 in
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Chimaera Rocket Example (cont’d)

• Chamber Pressure Time History

=0.969
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Chimaera Rocket Example (cont’d)

• Thrust Time History (Ax) curve

Total Impulse:
23.26 g-seconds

“Steady State”
Impulse: 

22.10 g-seconds

~95%

… so we are
Pretty consistent
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Nozzle Discharge Correction 
Coefficient

• Once the flow clears the throat and enters the Nozzle
a variety of losses can occur

• The discharge correction factor is 
used to express how well the nozzle 
design permits the mass flow rate 
through the throat to approach the 
theoretical rate, and is given by the ratio
of delivered mass flow rate to ideal 
mass flow rate:
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Nozzle Discharge Correction 
Coefficient (cont’d)

•

• Value of the Discharge Correction Coefficient is typically > 1
1) MW increases due to reactions within nozzle
2) Heat transfer to Nozzle wall Lowers  Gas density

• Typical values 1.0 to 1.15
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Correction Coefficient Summary
• Basic Definitions
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Correction Coefficient Summary 
(cont’d)

• Thrust Coefficient

• Specific Impulse
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Appendix 5.2 SSME Computational Example
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SSME Computational Example
• Space Shuttle Main Engine  …

• Unlike other propellants, the optimum mixture ratio for liquid oxygen and
liquid hydrogen is not necessarily that which will produce the maximum 
specific impulse. Because of the extremely low density of liquid hydrogen, 
the propellant volume decreases significantly at higher mixture ratios. 

• Maximum specific impulse typically occurs at a mixture ratio of around 3.5,
however by increasing the mixture ratio to, say, 5.5 the storage volume is 
reduced by one-fourth. This results in smaller propellant tanks, lower vehicle 
mass, and less drag, which generally offsets the loss in performance that 
comes with using the higher mixture ratio. In practice, most liquid oxygen/liquid
hydrogen engines typically operate at mixture ratios from about 5 to 6. 
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What is the Stoichiometric Mixture
Ratio of LOX/LH2?

MR=6.0 (What the shuttle operates at) --> “Rich Mixture”
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Compare Tank Volumes
• Space Shuttle has the following mass fraction characteristics

• Shuttle has 721,000 kg of propellant in main tank on pad



MAE 5540 - Propulsion Systems

Compare Tank Volumes (cont’d)

“best compromise”

O / F = 7.936→ 721,000kg
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SSME Computational Example 
(cont’d)

Ref: http://www.braeunig.us/space/

P0=186.92 atm
=18940 Kpa

• Space Shuttle Main Engine  …

• LOX/LH2  Propellants, 6.03: 1 Mixture ratio 
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SSME Computational Example 
(cont’d)
• Space Shuttle Main Engine  …

T0 ~
3615°K
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SSME Computational Example 
(cont’d)
• Space Shuttle Main Engine  …

Mw ~
13.6 kg/kg-mol
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SSME Computational Example 
(cont’d)
• Space Shuttle Main Engine  …

g ~
1.196
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Example: SSME Rocket Engine
• The Space Shuttle Main Engines
Burn LOX/LH2 for Propellants with
A ratio of LOX:LH2 =6:1

• The Combustor Pressure, p0
Is 18.94 Mpa, combustor 
temperature, T0 is 3615°K, 
throat diameter is 26.0 cm

• What propellant mass flow rate
is required for choked flow in the 
Nozzle?

• Assume no heat transfer Thru Nozzle 
no frictional losses, g=1.196
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Example: SSME Rocket Engine (cont’d)
-- By product ~ Burns rich, byproduct

is water vapor + GH2

MW ~ 13.6 kg/kg-mole

-- Rg = 8314.4612 /13.6 = 611.35 J/°K-kg

=

kg/sec-m2= 8252.59

• Compute Throat Area

• Mass flow =

m2=0.05309

=438.15 kg/sec
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Example: SSME Rocket Engine (continued)

• The nozzle expansion ratio is
77.5 -- what is the exit Mach number

• Non -linear function of mach number

• Solution methods
i) Plot A/A* versus mach
ii) Numerical Solution

=

= 77.49998 ----> Mexit = 4.677084

Newton Solver comes in handy here!
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Example: SSME Rocket Engine (cont’d)

Compute Exit Temperature

Mexit = 4.677084

=1149.90 °K

Compute Exit Velocity

= 4288.61 m/sec

=17.45511 kPa

Compute Exit Pressure
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Compute Thrust Coefficients at Sea Level and In Vacuum
• Sea Level

CF = =

=1.52546

• Vacuum

CF = =

=1.94006
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Compute Thrust Sea Level, Vacuum, and Optimal Altitude?
• Sea Level   CF

=  1.53397 x 106 N

=1.341

• Vacuum

Thrust = CF ⋅
Thrust
P0A

* = 1.52546 18.94 106
26
100⎝ ⎠

⎛ ⎞ 2π
4

· ·

Thrust = CF ⋅
Thrust
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* = 1.94006 18.94 106 26
100⎝ ⎠

⎛ ⎞ 2π
4

· · =  1.95089 x 106 N

• @ Optimal Altitude?
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⎛ ⎞
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⎜ ⎟
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⎝ ⎠
⎜ ⎟
⎜ ⎟
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Example: SSME Rocket Engine (cont’d)
Compute Characteristic Velocity C* in two ways

=2296.27 m/secC* = P0A
*

!m
=

C* =
γ Ru

γ 2
γ +1

⎛
⎝⎜

⎞
⎠⎟

γ +1
γ −1( )

To
MW

=

18.95 106 26
100⎝ ⎠

⎛ ⎞ 2π
4

·

438.15

=2296.25 m/sec

Close enough!
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Example: SSME Rocket Engine 
(cont’d)

Compute Max Isp

=

= 529.80 sec

2296 1.196 2
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2
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⎛ ⎞
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⎛ ⎞ 0.5

·

9.8067

Isp max =
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Example: SSME Rocket Engine 
(cont’d)

Compute Maximum Thrust.. Best we could ever get under perfect conditions

= 2.276 mNt

2296 1.196 2
1.196 1−

2
1.196 1+⎝ ⎠

⎛ ⎞
1.196 1+
1.196 1−

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞ 0.5

·

9.8067
438.15 9.8067·

Isp max =
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Example: SSME Rocket Engine 
(cont’d)

Compute Effective Exhaust  Velocity (Vacuum)

= 4452.53 m/sec
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Example: SSME Rocket Engine 
(cont’d)

Compute Effective Exhaust  Velocity (Sea level)

= 3500.98 m/sec

P sea Level =101.325 kPa
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Example: SSME Rocket Engine 
(cont’d)

Compute True Isp (Seal level) (ignore nozzle Losses)

= 357.024 sec
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Example: SSME Rocket Engine 
(cont’d)

Summary:
Ideal Calc. Calc. Actual Actual

Vac. S.L. Vac. S.L
________________________________________________________________
Isp 529.69 454.06 357.03 452.5 363
(sec):

Thrust: 2.271 1946.37 1530.42 2.10 1.67
(mNt)

• Obviously Our estimate of throat area is a bit small ….
… but you get the point …


