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Modeling Transient Rocket Operation
(Lecture 7.2: Solid Rockets) 

• Sutton and Biblarz: Chapter 11
• Richard Nakka Web Page:

* http://members.aol.com/ricnakk/th_pres.html

• .. The primary goal of man
is survival … food, shelter

… basic necessities …

• A second aim of 
man is to build things 
that run very HOT 
and very LOUD 
and move really, 
really FAST ...
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Transient Pressure Model
• Combustion Produces High temperature gaseous By-products

• Gases Escape Through Nozzle Throat

• Nozzle Throat Chokes (maximum mass flow)

• Since Gases cannot escape as fast as they are produced
… Pressure builds up

• As Pressure Builds .. Choking mass flow grows

• Eventually Steady State Condition is reached
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Choking Massflow per Unit Area
• maximum
Massflow/area
Occurs when 
When M=1

• Effect known 
as Choking in a 
Duct or Nozzle

• i.e. nozzle will
Have a mach 1 
throat
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Chamber Pressure Model
• Gaseous Mass Trapped in Chamber

• Assuming nozzle chokes immediately

∂
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Chamber Pressure Model (cont’d)
• Using ideal gas law, Assuming constant flame temperature

• Subbing into mass flow equation

ρc =
P0
RgT0

→ ∂
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Transient Operation Model For Solid Rockets
• Revisit General Model

• For Solid Rocket Motors
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∂t

+ P0
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Solid Rocket Example

∂P0
∂t

+ P0
1
Vc

∂Vc
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Solid Rocket Example (cont’d)

∂Vc
∂t

= Aburn r
•
→

Aburn = Grain Surface Burn Area

r
•
= Grain Linear Regression Rate
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m
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⎤
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= ρ p ⋅Aburn ⋅r

•
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EFFECT OF PRESSURE ON BURN RATE - Saint-Robert's Law

r = linear burning rate

a = an empirical constant moderately influenced by propellant 
grain temperature

n = burning rate pressure exponent
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Solid Rocket Example (cont’d)

•Propellant burn rate may be expressed in terms of the
chamber pressure by the Saint Robert's law … 

• careful with units on a … 

∂P0
∂t

= AburnaPo
n
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Solid Rocket Example (cont’d)

• careful with units on a … 

Sutton and Biblarz,
Chapter 11



MAE 5540 - Propulsion Systems 12

Solid Rocket Example (cont’d)

Solid Propellant Saint Robert's Curve Fit  (P0-psia, rdot- in/sec)

Propellant Name                                                  n                        a (in/sec-psia^n)
Composite Ammonium Nitrate, -40F           0.463474 0.002965
Composite Ammonium Nitrate, 60F             0.445084 0.003909
Composite Ammonium Nitrate, 140F           0.426803 0.005243
High Energy XLDB  Composite                     0.720473 0.002293
Composite Ammonium Perchlorate, -30F   0.187867 0.072001
Composite Ammonium Perchlorate, 60F     0.170286 0.094044
Composite Ammonium Perchlorate, 150F  0.172255 0.107348
JPN-type Double Base, 10F                           0.712606 0.003818
JPN-type Double Base, 70F                           0.701667 0.004624
JPN-type Double Base, 130F                         0.678433 0.006260
High Burn Rate Composite @ 68F                0.380710 0.126409

• Input, Psia
• Output, in/sec
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Solid Rocket Example (cont’d)

Propellant,  Saint Robert's Curve Fit  (P0-kPa, rdot- cm/sec)

propellant name                                                   n                      a (cm/sec-kPa^n)
Composite Ammonium Nitrate, -40F           0.463474 0.003077
Composite Ammonium Nitrate, 60F             0.445084 0.004204
Composite Ammonium Nitrate, 140F           0.426803 0.005841
High Energy XLDB  Composite                     0.720473 0.001449
Composite Ammonium Perchlorate, -30F   0.187867 0.127245
Composite Ammonium Perchlorate, 60F     0.170286 0.171940
Composite Ammonium Perchlorate, 150F  0.172255 0.195519
JPN-type Double Base, 10F                            0.712606 0.002450
JPN-type Double Base, 70F                           0.701667 0.003030
JPN-type Double Base, 130F                         0.678433 0.004291
High Burn Rate Composite @ 68F                0.380710 0.153949

• Input, kPa
• Output, cm/sec
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Solid Rocket Example (cont’d)

• Propellant Burn rate 
is extremely sensitive 
to exponent, n

• Stable operation requires
0.001 < n < 0.990

• High values of n make for
a propellant whose burn
rate is sensitive to chamber
pressure

Linear scale
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Exponent Effect on Burn Rate 
(Pressure Excursion)

Source: Barrere et al., Raketenantriebe, Fig 5.1  (1961)
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Effect of Burn Exponent
n>1 : Slight positive pressure excursion might lead to 
explosion of the chamber.

n ~ < 0.8: Maximum pressure exponent tolerated with 
typical solid rocket propellants.

n < 0: Slight negative pressure excursion might lead to 
continuing decay of chamber pressure and premature 
extinguishment of propellant.
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Effect of Burn Exponent (2)

n > 1
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Grain Temperature Effect on Burn Rate

Sutton, & Biblarz p. 268  (1986)
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Example from (2009) USLI Design Team Motor 
Tests (2)

Motor Burn Profiles

Chamber pressure

Thrust

Impulse
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Example from (2009) USLI Design Team Motor 
Tests (3)

Measures of Burn Time
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Example from (2009) USLI Design Team Motor 
Tests (4)

Temperature Adjusted Burn Profiles

Chamber pressure

Thrust
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Burn Rate Revisited

• Show that for
Uniform Cylindrical
Propellant grain necessarily
leads to Progressive burn
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Burn Rate Revisited (2)
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Burn Rate Revisited (3)

• Cylindrical Port … 

∂P0
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= RgT0
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Burn Rate Revisited (4)

• Cylindrical Port … 
Aburn
Vburn

= 2π ⋅r ⋅L
π ⋅r2 ⋅L

= 2
r

∂P0
∂t
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⎠⎟ ⋅
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⎞
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r
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Burn Rate Revisited (5)

• Cylindrical Port … 
Aburn
Vburn

= 2π ⋅r ⋅L
π ⋅r2 ⋅L

= 2
r

!r = aPo
n → ∂P0

∂t
> 2 ⋅ρ p ⋅Rg ⋅T0 ⋅

!r
r

⎛
⎝⎜

⎞
⎠⎟ = 2 ⋅ρ p ⋅Rg ⋅T0 ⋅

∂
dt
ln r( )( )

∂P0
∂t

> 2 ⋅ρ p ⋅Rg ⋅T0 ⋅
∂
dt
ln r( )( )→ P0(t ) > P0(0) + 2 ⋅ρ p ⋅Rg ⋅T0 ⋅ ln

r t( )

r 0( )

⎛

⎝
⎜

⎞

⎠
⎟

For a Cylindrical Port Burn, Pressure Rises Logarithmically with 
time
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Space Shuttle RSRM Numerical Example

• All dimensions are approximate

• Propellant:
Ammonium Perchlorate (69.6%) as 
oxidizer, Aluminum Powder (16%) 
as fuel, Iron Oxidizer Powder (0.4%) 
as catalyst, Polybutadiene Acrylic Acid 
Acrylonitrile (12.04%) (PBAN) as rubber-
based binder, Epoxy Curing 
Agent (1.96%)

• Propellant Density .. 1760 kg/m3

• Launch Propellant mass … 502,0 kg

113.4 ft
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Space Shuttle RSRM Numerical Example (cont’d)

• Dexit = 3.8 m ---> Aexit = 11.341 m2

• Aexit/A* = 7.78
--> A*=1.458 m2

113.4 ft • Propellant Density .. 1760 kg/m3

• Launch Propellant mass … 502,000 kg

Internal
Grain
Pattern
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Space Shuttle RSRM Numerical Example (cont’d)

Propellant,  Saint Robert's Curve Fit  
propellant name                                                   n                      a (cm/sec-kPa^n)
Composite Ammonium Perchlorate, 60F     0.172 0.192

∂P0
∂t

= AburnaPo
n

Vc
ρ pRgT0 − P0⎡⎣ ⎤⎦ − P0
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⎥
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⎢
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⎤
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⎥
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•

0

t
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n

0

t

∫ dt
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Space Shuttle RSRM Numerical Example (cont’d)

• Use Trapezoidal rule or Runge-Kutta to integrate

• Recursive propagation of chamber diameter

∂P0
∂t

= AburnaPo
n

Vc
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A*
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⎠⎟
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⎣

⎢
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⎢
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⎥
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⎥
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RSRM Burn Time History

• “Progressive
Burn Pattern”

Burn Time: 121 seconds



MAE 5540 - Propulsion Systems 32

RSRM Burn Time History (cont’d)

• “Progressive
Burn Pattern”

Burn Time: 121 seconds
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RSRM Burn Time History (cont’d)

• “Progressive
Burn Pattern”

Burn Time: 121 seconds
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RSRM Burn Time History (cont’d)

• “Progressive
Burn Pattern”

Burn Time: 121 seconds

∂P0
∂t

= AburnaPo
n

Vc
ρ pRgT0 − P0⎡⎣ ⎤⎦ − P0
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γ RgT0

2
γ +1

⎛
⎝⎜

⎞
⎠⎟
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⎥
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RSRM Burn Time History (cont’d)

• “Progressive
Burn Pattern”

• Quoted 
“Nominal Thrust”
of SRB (11,780 kNt)

So our model is “pretty good”
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Burn Area Revisited (1)

• What happens to the burn area with this pattern?

∂P0
∂t

= AburnaPo
n

Vc
ρ pRgT0 − P0⎡⎣ ⎤⎦ − P0

A*

Vc
γ RgT0

2
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⎛
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⎞
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⎣

⎢
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⎥
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⎥
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Burn Area Revisited (2)

time

• Burn Area stays relatively constant

• Burn Volume Goes Down

• Ratio of Burn Area to
Chamber Volume goes
….. Down! Fast!

• Result is a more shaped
burn profile

“tips burn first”

∂P0
∂t

= AburnaPo
n

Vc
ρ pRgT0 − P0⎡⎣ ⎤⎦ − P0
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⎛
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⎠⎟
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⎥
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⎥



MAE 5540 - Propulsion Systems 38

SHAPE OF PROPELLANT GRAINS QUENCHED AT DIFFERENT TIMES 

Start condition     Quenched at 1.5 s     Quenched at 2.5 s
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Modified RSRM Burn Time History

• “Neutral
Burn Pattern”

• “Progressive
Burn Pattern”

Burn Time: 129 seconds
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Modified RSRM Burn Time History (cont’d)

• “Neutral
Burn Pattern”

• “Progressive
Burn Pattern”

Burn Time: 129 seconds
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Modified RSRM Burn Time History (cont’d)

• “Neutral
Burn Pattern”

• Significantly
Less delivered impulse

• “Progressive
Burn Pattern”
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Finally Look at grain pattern

• “Regressive Grain pattern” … Burn surface area actually 
shrinks As propellant is burned

“Dendrite Grain”
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Modified RSRM for Dendrite Grain Pattern

Burn Time: 142 seconds
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SOLID ROCKET MOTOR GRAIN DESIGNS

Source: Köhler, Feststoffraketenantriebe, Vol. 1, p. 122  (1972)
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EXAMPLES  OF  SOLID  ROCKET  MOTOR  UNUSUAL  GRAIN  DESIGNS 

Source: Barrere et al., Raketenantriebe, p. 321, Fig 6.1 (1961)
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Solid Rocket Burn Summary
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SOLID ROCKET MOTOR 
GRAIN DESIGN PROGRAMS

• Grain Design Program (GDP-Light) 
• http://home.vianetworks.nl/users/aed/gdp/gdp.htm

• Useful Code to test new and unusual grain shapes 
to achieve certain thrust profiles or minimize 
slivers and residual burning.
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The “Bates Grain” Geometry
Simple Modification to Cylindrical Port to Give More 

Even Burn Pattern

Grain segments burn from
“inside” and along the “ends”
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The “Bates Grain” Geometry (2)

Look at Burn evolution
of

For each 
grain segment

sregression = r
•

⋅dt
t
∫

→
Aburn =   2π ⋅

D0
2 − d 2

4
⎛

⎝⎜
⎞

⎠⎟
      + L ⋅π ⋅d

               end of segment   interior of grain
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The “Bates Grain” Geometry (3)

Look at Burn evolution
of

For each 
grain segment

regressing interior 
surface diameter +
ends of  segment

→
d = d0 + 2 ⋅ s
L = L0 − 2 ⋅ s

Aburn = 2π ⋅ D0
2 − d 2

4
⎛
⎝⎜

⎞
⎠⎟
+ L ⋅π ⋅d =

π
2
⋅ D0

2 − d0 + 2 ⋅ s( )2( )+π ⋅ L0 − 2 ⋅ s( ) ⋅ d0 + 2 ⋅ s( )
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The “Bates Grain” Geometry (4)

Look at Burn evolution
of

For N grain segments
regressing interior 
surface diameter +
ends of  segment

→
d = d0 + 2 ⋅ s
L = L0 − 2 ⋅ s

Aburn( )total
= N ⋅π ⋅

D0
2 − d0 + 2 ⋅ s( )2( )

2
+ L0 − 2 ⋅ s( ) ⋅ d0 + 2 ⋅ s( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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The “Bates Grain” Geometry (5)

Look at Burn evolution
of

Port Volume ….   “burn end” volume

Look at total chamber burn volume (empty space) at any time

Vol( )total
= N ⋅ π ⋅ d 2

4
⋅L       +          π D0

2

4
⋅ 2 ⋅ s( )⎡

⎣
⎢

⎤

⎦
⎥
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The “Bates Grain” Geometry (6)

Look at Burn evolution
of

Allowing for regression from original geometry 

Vol( )total
= N ⋅ π ⋅ d 2

4
⋅L       +          π D0

2

4
⋅ 2 ⋅ s( )⎡

⎣
⎢

⎤

⎦
⎥ =

N ⋅π
4

d0 + 2 ⋅ s( )2 ⋅ L0 − 2 ⋅ s( )  +  D0
2 ⋅ 2 ⋅ s( )⎡

⎣
⎤
⎦
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The “Bates Grain” Geometry (8)

Look at Burn evolution
of

Aburn( )total = N ⋅π ⋅
D0

2 − d0 + 2 ⋅ s( )2( )
2

+ L0 − 2 ⋅ s( ) ⋅ d0 + 2 ⋅ s( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Vol( )total =
N ⋅π
4
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⎣
⎤
⎦
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=
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2
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⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

N ⋅π
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⎣
⎤
⎦
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⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

2
+ 1− 2 ⋅ s

L0

⎛
⎝⎜

⎞
⎠⎟
⋅ d0 + 2 ⋅ s

D0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

d0 + 2 ⋅ s
D0

⎛
⎝⎜

⎞
⎠⎟

2

⋅ 1− 2 ⋅ s
L0

⎛
⎝⎜

⎞
⎠⎟

 +  2 ⋅ s
L0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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The “Bates Grain” Geometry (9)

Summary of Algorithm

r
•

= a ⋅Po
n

sregression = r
•

⋅dt
t
∫

→

Aburn( )
total

= N ⋅π ⋅
D0

2 − d0 + 2 ⋅s( )2( )
2

+ L0 − 2 ⋅s( ) ⋅ d0 + 2 ⋅s( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Vol( )
total

= N ⋅π
4

d0 + 2 ⋅s( )2
⋅ L0 − 2 ⋅s( )  +  D0

2 ⋅ 2 ⋅s( )⎡
⎣⎢

⎤
⎦⎥
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Comparative Burn Example

57

Fuel grain  shape effect on a small 
Solid propelled motor (AMW L777)

1.68885 kg 
of propellant

First compare 3-grain bates configuration against
Hypothetical 6-grain configuration
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Comparative Burn Example (2)

58

1.68885 kg 
of propellant

Then compare 
more intricate port 
patterns 
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Comparative Burn Example (3)

59

• Initial Grain Patterns

• Propellant Mass:
1.68885 kg
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Comparative Burn Example (4)

60

• Grain Geometry 
after 1-sec burn

• Cross section of clover 
leaf becoming circular
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Comparative Burn Example (5)

61

• Grain Geometry 
after 2-sec burn

• 4-Port grain completely 
burned
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Comparative Burn Example (6)

62

• Grain Geometry 
after 3-sec burn

• 6-Port grain longitudinal 
gaps prominent
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Comparative Burn Example (7)

63

• Grain Geometry 
after 4-sec burn

• Cylindrical cross sections
burning equally 
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Comparative Burn Example (8)

64

• Grain Geometry 
after 5-sec burn

• Clover Leaf grain 
essentially consumed
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Comparative Burn Example (9)

65

• Grain Geometry 
after 6-sec burn

• All Cylindrical port 
propellant consumed
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Comparative Burn Example (10)

66
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Comparative Burn Example (11)

67
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Effects of Erosive Burning and Propellant Grain 
Fracture on Solid Propellants
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Erosive Burning

69

1) When high velocity or high mass flow hot gas from upstream
combustion passes over a downstream burning surface in a solid rocket motor
local, chaotic increase in propellant burning rate results; phenomenon referred to
as erosive burning.

2) Two  types of erosive burning; velocity-based erosive burning and
mass flux-based erosive burning. AP/composite propellants are more sensitive to 
the effect of the hot gas velocity flowing past burning propellant surface, some 
propellants (hybrids in particular) are more sensitive to the effect of the mass
flux of the hot gas over the burning surface

3) Distinct thresholds for core combustion gas velocity and core mass flux for 
the onset of velocity-based erosive burning and mass flux-based erosive burning.

4) Erosive Burning is nearly accompanied by a random burn rate element, 
making for a high variability on trust and total impulse levels for a given class of 
motors 
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Erosive Burning (2)

70

… St. Roberts Law strictly only “works” for non-erosive 
grain burns … Erosive burns are complex, typically chaotic, and hard to predict / 

analyze

Erosion Properties Highly 
Dependent on Chamber Flow Velocity

Eilers/Whitmore, JPC 2007, 

AIAA-2007-5349
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Erosive Burning (3)

71

… St. Roberts Law only “works” 
for non-erosive grain burns

“Plateau effects” are result  different surface regression rates  --- pressure 
dependent

-- condensed phase combustion products also "pool" and retard heat transfer 
to the surface at elevated pressures.
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Erosive Burning (4)

72

Heat Transfer Mechanisms as a Function of Combustion Gas Velocity
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Erosive Burning (5)

73

• Most propellants have certain levels of combustion gas velocity 
(Mach number) that leads to an increased burning rate. 

• ”Augmentation" of burn rate is referred to as erosive burning, 
chaotic and difficult to predict

• Physical  mechanism -- increased convective heat transfer to the 
propellant surface – resulting from flow turbulence

• For many propellants, a threshold Mach number occurs. 

• Below this flow level, no augmentation occurs, or a decrease
in burn rate is experienced (negative erosive burning). (Slag    
buildup)

• Both Augmented (+) and Suppressed (-) Erosive Burning result 
in Chaotic Behaviors
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Erosive Burning (6)

74

Augmented (+)

Suppressed (-)
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A Simple Erosive Burning Model

75

.. Mean Regression Rate Augmentation/Suppression

• k  … empirical scale factor
• Mport … Port Mach number based on Aport/A*

• Mcrit … critical or thresh hold Mach number

Ø Port Mach Number Above Mcrit .. --> Burn rate is augmented
Ø Port Mach Number Above Mcrit .. --> Burn rate is suppressed

!rerosive = !r( )Saint
Roberts
⋅
1+ k ⋅

Mport

Mcrit

1+ k

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= aP0
n ⋅
1+ k ⋅

Mport

Mcrit

1+ k

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
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A Simple Erosive Burning Model (2)

76

!rerosive = !r( )Saint
Roberts
⋅
1+ k ⋅

Mport

Mcrit

1+ k

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

= aP0
n ⋅
1+ k ⋅

Mport

Mcrit

1+ k

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

• k  … empirical scale 
factor

• Mport … Port Mach 
number based on 
Aport/A*

• Mcrit … critical or 
thresh hold Mach 
number



MAE 5540 - Propulsion Systems 77

Preventing Erosive Burning

(From C. E. Rogers, “Erosive Burning Design Cruteria for High Power and 
Experimental/Amateur Solid Rocket Motors, High Power Rocketry, Vol. 36, No. 1, Jan. 

2005)

77

..Effects of erosive burning can be minimized by designing the 
motor with a sufficiently large port-to-throat area ratio (Aport/A*).
.. to keep combustor gas velocities below threshold Vaue 
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Preventing Erosive Burning (2)

78
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Preventing Erosive Burning

79
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Preventing Erosive Burning (4)

80

Typical Effect of Combustion Gas Velocity on Burning 
Rate Augmentation - Velocity- Based Erosive Burning. 
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Typical Effect of Mass Flux on Burning Rate 
Augmentation - Mass Flux-Based Erosive Burning. 

Preventing Erosive Burning (5)
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Rules of Thumb for Preventing Erosive 
Burning

82

• Non-Erosive (Safe Zone)

Mach Number
Core Mach Number < 0.50
For g = 1.2; Aport/A* > 1.36

Mass Flux
P0 = 400-600 psia; Core Mass Flux < 1.0 lb/sec-in2

P0 = 800 psia; Core Mass Flux < 1.75 lb/sec-in2

P0 = 1400 psia; Core Mass Flux < 2.0 lb/sec-in2
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Rules of Thumb … (2)

83

• Maximum Recommended Allowable Parameter at Erosive 
Burn Threshold: (Tickling Tail of the Dragon)

Mach Number
Core Mach Number < 0.70
For g = 1.2; Aport/A* > 1.10

Mass Flux
P0 = 400-600 psia; Core Mass Flux < 2.0 lb/sec-in2

P0 = 800 psia; Core Mass Flux < 2.5 lb/sec-in2

P0 = 1400 psia; Core Mass Flux < 3.0 lb/sec-in2

Core Mass Flux limits for Max Recommended Erosivity should not be exceeded 
unless erosive Burning Characterization Tests are performed for propellant.
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Propellant Burning Surfaces Contributing to Core Mass Flux at Aft End 
of Core. … Core Mass Flux Based on Non-Erosive Burn Rate. 

Fuel Port Core Geometry Design

!mtotal = ρ fuel ⋅ !r( ) 2π( )⋅ r(x)
0

L

∫ ⋅dx
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Combined Core Mach Number/Core Mass Flux Erosive Burning Design 
Criteria for Motors With Constant Port Diameter

Step 1:
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Constant Mass Flux Initial Port Design
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Constant Mass Flux Initial Port Design (2) 

• Fix initial port radius until Flux > Gmax at some critical location xcr
• Then grow port diameter to give constant massflux 

• xcr r(x)= ro

L
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Constant Mass Flux Initial Port Design (3) 

• Use Allowable Gmax to find location of  xcr

• xcr r(x)= ro

L
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Constant Mass Flux Initial Port Design  (4)

• Apply Max Flux Design Rule @ L

• Solve for Threshold Value of K @ L

• xcr r(x)= ro

K 2+
2r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−
ρ fuel ⋅ !r

Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
⋅K+

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−2
ρ fuel ⋅ !r

Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅

L
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
= 0
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Constant Mass Flux Initial Port Design (5)

• Solve Quadratic Equation

• xcr r(x)= ro

K =
ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
±

ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

2

+
r0

L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅
4 ⋅L
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

Keep Root with Positive Value  

.. K determines our radius growth slope at xcr
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Constant Massflux Design Example (6)

• Mean Combustion Pressure (Quasi Steady) of Augmented Grain

∂P0
∂t
=
AburnaPo

n

Vc
ρ pRgT0−P0⎡
⎣⎢

⎤
⎦⎥ −P0

A*

Vc
γRgT0

2
γ+1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ+1
γ−1( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Quasi−Steady :
AburnaPo

n

Vc
ρ pRgT0−P0⎡
⎣⎢

⎤
⎦⎥= P0

A*

Vc
γRgT0

2
γ+1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ+1
γ−1( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

!r= aPo
n→ P0ss

A*

Vc
γRgT0

2
γ+1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ+1
γ−1( )
+
Aburn !r
Vc

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
Aburn !r
Vc

ρ pRgT0⎡
⎣⎢

⎤
⎦⎥

→ Solve for  P0→ P0ss
=

ρ pRgT0

A*

Aburn !r
γRgT0

2
γ+1
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ+1
γ−1( )
+1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Constant Massflux Design Example (7)

• Mean Combustion Pressure (Quasi Steady), Account for 
Increased Burn Area due to expanded Port Radius
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Constant Massflux Design Example (8)

• Algorithm, Iterate to convergence
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Constant Massflux Design Example (9)

• Initial Erosion Compensated Port Geometry
Port  Radius
x> xcr
→ r(x)= r0+ K ⋅ x− xcr( )
else
→ r(x)= r0

Port  Volume

Vport = π ⋅ xcr ⋅r0
2+ r 2 dx

xcr

L

∫
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=

π ⋅ xcr ⋅r0
2+

L− xcr( )
3

⋅ r0+ K ⋅ L− xcr( )( )2+ r0 ⋅ r0+ K ⋅ L− xcr( )( )2+ r02{ }
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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Example Calculation
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Example Calculation (2)
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Example Calculation (3)

• Adjusted Port Diameter à

K =
ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪
±

ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

2

+
r0

L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
ρ fuel ⋅ !r

2 ⋅Gmax

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
⋅
4 ⋅L
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−

r0
L− xcr

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
⎪⎪⎪

Gmax =1.0 lbm
in2−sec

70.33 g
cm2−sec

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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Constant Massflux Design ExampleConstant Massflux Design Example (4)

• Adjusted Port Diameter à

Gmax =1.0 lbm
in2−sec

70.33 g
cm2−sec

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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Example Calculation (5)
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Exponent Effect on Burn Rate 
(Pressure Excursion)

Source: Barrere et al., 
Raketenantriebe, Fig 5.1  (1961)

• High values of burn exponent (n)
make for a propellant whose burn
rate is sensitive to chamber
pressure 

• Solid propellant motors with high 
burn rate profiles specially 
susceptible to fuel grain cracks and 
fractures

• Erosive burning can precipitate 
grain fracture
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What happens when a solid propellant
grain factures?

97

97

• Solid propellant grain fracture events produce detrimental effects 
on motor performance, and can sometimes be catastrophic

• As crack propagates in the grain or along the grain/case interface, 
it creates additional burning surfaces

• Augmented burn area produces an excess of hot gas

• Excess mass flow strongly affects the chamber pressure rise and 
can (depending on the burn exponent) couple with the regression 
rate to produce a runaway burn and catastrophic failure. 
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What happens when a solid propellant
grain factures? (2)

98

• A classical example of a catastrophic solid rocket failure resulting 
from propagation of a crack along the grain/case interface is the 
Titan IV accident August, 1998
• Aerodynamic effects associated with the grain shape near a slot 
and the interaction between core and cross flows resulted in a 
dramatic increase in the head end pressure of the motor. 
• The crack extended to the propellant case bond and propagated 
along the interface between the fuel and case. 
• This sequence of events eventually led to the choking of the core 
flow and resulted in the rocket exploding.

http://www.youtube.com/watch?v=ZFeZkrRE9wI
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What happens when a solid propellant
grain factures? (3)

99

• Saint Robert’s Pressure/Burn Rate Coupling

• Propellant Surface deformation

• Wall Burn Through 
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Extremely Complex Fluid/Structural Interaction 
Problem

100

State of the Art Modeling
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Project 2

101

Build Unsteady Model of “Pike” .. Use Integrator of your choice 

Calculate: 
Chamber pressure profile

Regression rate profile
Massflow rate (compare to choking massflow)
Mass depletion vs time
plot Thrust profile
plot Total Impulse profile
Effective Mean Specific Impulse

Allow:
St. Robert’s Parameter Input
Variable Step Size
Variable Thermodynamic Properties (as inputs to the problem)
Erosive burn model for cylindrical port  (Not Bates grain)
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Project 2 (2)

102

L0 = 35 cm
D0= 7.6 cm
D0=3 cm
r propellant = 1260 kg/M3

Fuel Grain Geometry

Nozzle Geometry
A* = 1.887 cm 2
Aexit/A* = 4.0
qexit = 20 deg.

Animal WorksTM, 
L700 Motor Geometry 

Part 1, cylindrical port

Single propellant
segment

Assume ends are burn inhibited
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Project 2 (3)

103

g = 1.18
MW = 23 kg/kg-mol
T0= 2900 K

Combustion Gas Properties

Burn Parameters
a= 0.12 cm/(sec-kPa n)
n=0.16
M crit = 0.3
k = 0.2
(cylindrical port only)
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Project 2 (4)
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L0 = 35 cm
D0= 7.6 cm
D0=3 cm
r propellant = 1260 kg/M3

Fuel Grain Geometry

Nozzle Geometry
A* = 1.887 cm 2
Aexit/A* = 4.0
qexit = 20 deg.

Animal WorksTM, 
L700 Motor Geometry 

Part 1, cylindrical port

Repeat results
Using bates grain
With 3 segments

Assume ends are not! burn inhibited
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g = 1.18
MW = 23 kg/kg-mol
T0= 2900 K

Combustion Gas Properties

Burn Parameters
a= 0.12 cm/(sec-kPa n)
n=0.16
M crit = 0.3
k = 0.2
(cylindrical port only)

Set to Zero for 
Bates grain

Assume no erosive’
burning
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Examine sensitivity of calculations to burn rate parameters,
Critical Mach number (for erosion) … cylindrical port
Only, Assume bates grain does not burn erosivley

What is the effect of Flame temperature (T0)

Plot Regression rate versus Chamber pressure

Prepare report stating your results and conclusions
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