UtahState UNIVERSITY Final Project, Spring 2022

• Assignment is due on or before the Final exam, Monday, May 2(11:59 AM MDT)

NASA "Mighty Eagle" Autonomous Robotic Lunar Lander Test Platform

20 Points Total

NASA Marshall Space Flight Center and the Johns Hopkins Applied Physics Laboratory have been working together since 2005 to develop technologies and mission concepts for a new generation of small, versatile robotic landers to land on airless bodies, including the moon and asteroids, in our solar system.

As part of this larger effort, APL and the Marshall Space Flight Center worked with the Von Braun Center for Science and Innovation to construct a prototype *hydrogen-peroxide monopropellant-fueled* robotic lander that has been given the name *Mighty Eagle*.

UtahState UNIVERSITY Required Data for Report (2 pts for proper formatting)

- 1. CEA Program Setup (Step 1) (5 pts)
 - Screen Shots of program setup
 - Plots of Chamber conditions, T_0 , γ , M_w , c^* as a function of P0, %H2O2 Concentration
 - Plots of C_F, c^{*} and I_{sp} as a function of P0, %H2O2 Concentration •
 - Discussion of results •

2. **Optimal Performance Analysis** (*Step 2*) (3 *pts*)

- 90% H₂O₂ concentration, Plots of Nozzle exit pressure versus chamber pressure.
- Optimal Chamber pressure for EGC thruster.
- Engine Thrust and Isp Specific Impulse @Optimal Chamber pressure

3. Throttle Area Schedule (Step 3) (4 pts)

- Solution for Pintle $C_d A_{pintle}$ in terms of steady-state chamber pressure, $P_{\theta_{ss}}$
- Plot of injector area as a function of chamber pressure, P_0
- Plot of Massflow as a function of the Pintle Injector area
- Plot of *massflow as a function of thrust* for EGC Engine ٠
- Pintle Area Settings at Minimum and Maximum Thrust levels for EGC Engine •

4. Hover Control Schedule (Step 4) (4 pts)

- Plot of EGC thrust, total thrust, Isp for Hover Control as a function of time
- Plot of EGC Pintle Area for Hover Control as a function of time ٠
- Plot of Vehicle Mass, consumed propellant as a function of the time ٠

Total Burn Time (Step 5) (2 pts) 5.

- Mean Isp calculation
- Rocket equation, total burn time calculation
- Comparison to burn time from part 4.

UNIVERSITY

Background (1)

• Hydrogen peroxide was chosen for the prototype system because its decomposition by products, steam and oxygen, are both nontoxic, and it provides sufficient energy density to achieve the target flight times. • A blowdown 90% pure hydrogen peroxide monopropellant propulsion system that is pressurized using regulated high-purity nitrogen provides actuation for both the attitude control system (ACS) and the descent control systems.

Machanteal & Flaroge

• A large throttleable monopropellant engine provides *Earth gravity cancellation* (EGC). The EGC engine nominally produces a thrust of five-sixths the weight of the lander throughout the flight to approximately simulate lunar gravity for the rest of the system by nulling the difference between Earth and lunar gravity.

• A fixed EGC engine was chosen over a gimbaled design to minimize system complexity, cost, and schedule constraints.

UtahState

Background (2)

• The propulsion system was built by Dynetics in collaboration with MSFC and APL, feeds 16 mono-propellant hydrogen-peroxide thrusters: twelve 44.5 N (10 lbf) attitude control thrusters, three 250 N (60 lbf) descent engines, and the throttleable EGC engine with a thrust range from approximately 1000 N (225 lbf) to 3114 N (700 lbf).

• The 12 attitude thrusters are grouped into six coupled pairs to allow torque to be applied independently to each of the three rotation axes of the vehicle. The three fixed descent engines provide the vertical thrust to control the vehicle's altitude and descent rate.

MAE 5540 - Propulsion Systems

Mechenleel & Ferogram

UNIVERSITY

Description	Size
Dry mass	207 kg
Descent thrusters	3 total
Descent thrust (each)	60 lbf
ACS thrusters	12 total
ACS thrust (each)	10 lbf
Max propellant mass	193 kg
Propellant	H ₂ O ₂
Pressurisation	Nitrogen
Height	4 ft
Diameter	8 ft
Payload	3D camera

Background (3)

- Propulsion System
 - \circ H₂O₂ Decomposition with Silver catalyst
 - EGC engine 1000 N (225 lbf) to 3114 N (700 lbf).

- \circ 3 x Descent Thrusters 270 N (60 lbf) Ea.
- \circ 12 x Attitude Control 44.5 N (10 lbf) Ea.
- \circ 116 kg Max H₂O₂ Loading

• High purity nitrogen pressurant

- o 3000 psi tank pressure
- Regulated down to 750 psi (5170 kPa) feed pressure
- 7 kilograms (15 lb) of pressurant.
- Fully Fueled Mass 400 kg (882 lbf)

UNIVERSITY

Background (5)

MAE 5540 - Propulsion Systems

 EGC engine operates continuously and nominally offsets 5/6th of the vehicle weight

Medicinies & Flarospeces

- EGC also Used to Hover the vehicle
- Variable Area Injector Pintile Valve Throttle Control on EGC System
- ECG Nozzle Expansion Ratio - 5.7:1
- Conical Nozzle with exit angle 15.4 °
- Throat Area $A^* = 4.5 \text{ cm}^2$
- Nominal Operating Altitude ~ 1200 ft.
- $P_{\infty} \sim 97 \text{ kPa}$

UtahState UNIVERSITY CEA Program Setup (Step 1) (5 pts)

• Install CEA program and Update Java Runtime (JRE) on your computer

• Set up input file to run as "Rocket" Problem with a range of combustion pressures from 1000 kPa (145 psia) to 6000 kPa (870 psia)

• Set up problem to calculate performance of H_2O_2/H_2O monopropellant mixture for H_2O_2 mass concentrations varying from 70% to 95% (i.e. 70, 75, 80, 85, 90, 95%) .. Assume Liquid H_2O_2 and H2O at 298 K

• Run code in "equilibrium", with "infinite" combustor contraction ratio, Define a 5.7:1 expansion ratio, and allow for shifting equilibrium in CEA

• At Operating Altitude Ambient Pressure at MSFC test site is 97 kPa (14.07 psia)

Medicinies & Flarospeces Engineering

UNIVERSITY

Final Project (Step 1) (2)

- Estimate the Combustion temperature and associated properties using Gibbs free-energy and available-heat calculations
- H_2O_2 = "oxidizer", H_2O = "fuel", reactants at standard conditions, 298 K
- Define output file (.plt) with sufficient outputs to calculate C_F , c^* and I_{sp}
- Read .plt file
- For Each (Chamber) Pressure Value, Plot T₀, γ, M_w, c* for the combustion chamber conditions as a function of %H2O2 Concentration What can you conclude about the effects of chamber pressure on Mono-propellant decomposition (combustion chamber properties)?
- For Each (Chamber) Pressure Value, Plot C_F , c^* and I_{sp} (exit conditions) as a function of %H2O2 Concentration ... do these exit parameters vary with pressure?

UtahState UNIVERSITY

Optimal Performance Analysis (Step 2) (3 pts)

- For the 90% H₂O₂ concentration, From CEA .plt file, Plot the Nozzle exit pressure versus the prescribed chamber pressure.
- Interpolating the results from this plot, at what chamber pressure is the Mighty Eagle ECG Engine operating at Optimal (Design) Conditions.
- Insert this Value into the CEA pressure list, re-run code, and verify result give Pexit=97 kpa
- What is the Engine Thrust level and Specific Impulse when Operating at the Optimal (Design) Chamber pressure Setting?

$$\frac{A_{exit}}{A^*} = 5.7 \qquad A^* = 4.5_{cm^2}$$

$$\left(p_{\infty}\right)_{operating} \approx 97_{kPa} \qquad \theta_{exit} = 15.4^o$$
MAE 5540 - Propulsion Systems

Madhenleel & Flarospece Engineering

> COMBUSTION CHAMBER

> > OXIDIZER ORIFICE

PINTLE

INJECTOR FACE

UNIVERSITY Throttle Area Schedule (Step 3) (4 pts)

The large throttleable engine provides Earth gravity cancellation (EGC). The EGC engine nominally produces a thrust of five-sixths the weight of the lander throughout the flight to approximately simulate lunar gravity for the rest of the system by nulling the difference between Earth and lunar Gravity

UtahState

Mechanileal & Flarospans Engineering

Throttle Area Schedule (Step 3) (2)

UtahState

UNIVERSI

For a Mono-propellant H_2O_2 Thruster, the Chamber ballistic equation can be modified as

$$\frac{dP_0}{dt} + P_0 \cdot \left(\frac{A^*}{V_c} \cdot \sqrt{\gamma \cdot R_g \cdot T_0} \cdot \left(\frac{2}{\gamma + 1}\right)^{\left(\frac{\gamma + 1}{\gamma - 1}\right)}\right) = \frac{R_g \cdot T_0}{V_c} \cdot \left(C_d A_{pintle}\right) \cdot \sqrt{\rho_{H_2 O_2}} \cdot \left(p_{inj} - P_0\right)$$

- Given the upstream injection pressure, *p*_{inj}
 - Solve for the Pintle Injector Discharge Area, $C_d A_{pintle}$ That gives the desired steady-state chamber pressure, $P_{\theta_{ss}}$

$$\left(C_{d}A_{pintle}\right) = f\left(\frac{A^{*}}{V_{c}}, \rho_{H_{2}O_{2}}, (\gamma, R_{g}, T_{0}), p_{inj}, P_{0ss}\right)$$

Mechanical & Flarospaces

Throttle Area Schedule (*Step 3*) (3)

- Using from the CEA analysis for 90% H₂O₂
 - Plot the required injector area as a function of chamber pressure, $P_0(P_{0ss})$
 - Plot the resulting Massflow as a function of the Pintle Injector area
 - Assume
 - $p_{inj} = 750 \text{ psi} (5170 \text{ kPa}) \text{ feed pressure}$
 - $A^* = 4.5 \text{ cm}^2$
 - $C_d = 0.9$
 - 90% $\rho_{H_2O_2/H_2O}$ @298 K=1.387 g/cm³
 - Use CEA *T*₀ @ combustion chamber
 - Use γ , R_g @ Nozzle Throat (*) @ 90% peroxide concentration

Machanical & Flarospace

litahState VERSIT Throttle Area Schedule (*Step 3*) (4)

- Using the CEA analysis for 90% H₂O₂
 - Plot the resulting *thrust level and specific impulse* as a 0 function of P_0 and Pintle Injector area, A_{pintle}
 - Plot massflow as a function of thrust 0

• What are the Pintle Area Settings at the

Minimum and Maximum Thrust levels for the

EGC Engine, 1000 N (225 lbf) to 3114 N (700 lbf).

• Assume
$$p_{\infty} = 97 \, kPa$$
, $P_0 = P_{0 \, ss}$

$$\circ \quad \theta_{exit} = 15.4^{\circ}$$

 $\circ A^* = 4.5 \ cm^2$ USE CEA Output to get $(C_F)_{Opt}$ $C_{F} = \frac{Thrust}{P \cdot A^{*}} = \frac{\lambda \cdot \dot{m} \cdot V_{exit}}{P \cdot A^{*}} + \frac{\left(p_{exit} - p_{\infty}\right) \cdot A_{exit}}{P_{\alpha} \cdot A^{*}} = \lambda \cdot \left(C_{F}\right)_{opt} + \frac{\left(p_{exit} - p_{\infty}\right) \cdot A_{exit}}{P_{\alpha} \cdot A^{*}} = \lambda \cdot \left(C_{F}\right)_{opt} + \left(\frac{p_{exit} - p_{\infty}}{P_{\alpha}}\right) \cdot \left(\frac{A_{exit}}{A^{*}}\right)$ $\left(C_{d}A_{pintle}\right) = f\left(\frac{A^{*}}{V}, \rho_{H_{2}O_{2}}, \left(\gamma, R_{g}, T_{0}\right), p_{inj}, P_{0ss}\right)$ $Thrust = C_F \cdot P_0 \cdot A^* \rightarrow I_{sp} = \frac{Thrust}{g_0 \cdot \dot{m}}$

$$\lambda = \frac{1 + \cos \theta_{exit}}{2}$$

MAE 5540 - Propulsion Systems

Pintle Injector (LMDE)

FUEL ORIFI

AD HISTING

Dressler, G. A., "Summary of Deep Throttling Rocket Engine with Emphasis on Apollo LMDE," AIAA Paper 2006-5220

COMBUSTION CHAMBER

FACE

UtahState UNIVERSITY Hover Control Schedule (Step 4) (4 pts)

• Because the EGC engine operates continuously and offsets the vehicle weight, the total "Delta V" capacity of the EGC system is the primary driver limiting the vehicle flight time.

• Vehicle mass as a Function of Time

- Ignore attitude control thrusters
- Assume constant thrust level for the 3 descent thrusters
- EGC engine has variable thrust and massflow
- Descent thrusters operate at *optimal* I_{sp} level for H_2O_2

$$M_{(t)} = M_0 - \int_0^t \dot{m} \cdot dt = M_0 - \int_0^t \dot{m}_{EGC} \cdot dt - 3 \cdot \dot{m}_{descent} \cdot dt$$

$$\dot{m}_{descent} \approx \frac{F_{descent}}{I_{sp_{opt}}} \rightarrow F_{descent} = 270 \text{ N}$$

Medicinated & Flarospece Engineering

Hover Control Schedule (Step 4) (2)

- Using Data from massflow versus EGC Thrust Plot from Step 3
 - Plot the required EGC thrust level, and total
 thrust (including descent thrusters) required
 for Hover Control as a function of time
- Using Data from Thrust versus Pintle Area from Step 3
 - Plot the required EGC Pintle area required for Hover Control as a function of time
- **Be sure to track the total vehicle mass and propellant load to calculate the total available burn time for the vehicle,** $M_{dry} = 207 \ kg$

- For Hover, vehicle acceleration level must equal 1-g
- Since descent Engine thrust is constant, EGC engine regulates the total thrust in hover,

$$A_{ccl_{vert}} = 1g \longrightarrow F_{EGC(t)} + 3 \cdot F_{descent} = g \cdot M_{(t)}$$

$$F_{EGC(t)} = g \cdot \left(M_0 - \int_0^t \dot{m}_{EGC} \cdot dt - 3 \cdot \frac{\dot{m}_{descent}}{1000} \cdot t \right) - 3 \cdot F_{descent}$$

Assume $g = g_0 = 9.8067 \ m/sec^2$

Total Burn Time (Part 5) (2 pts)

UtahState

• Check your integrated burn time against the rocket equation

Propulsive ΔV *loss from acting against gravity....*

$$(\Delta V)_{gravity} = \int_{0}^{T_{burn}} g(t) \cdot \sin \theta \cdot dt$$

$$\Delta V_{hover} = g \cdot t_{burn} = g_0 \cdot I_{sp} \cdot \ln\left(\frac{M_0}{M_{(tburn)}}\right)$$

Hover
$$\rightarrow \theta = 90^{\circ} \rightarrow$$

$$\rightarrow t_{burn} \approx (I_{sp})_{avg} \cdot \ln\left(\frac{M_0}{M_{(tburn)}}\right)$$

$$F(t) = F_{EGC}(t) + 3 \cdot F_{descent}$$

$$F(t)_{avg} = \frac{\int_{0}^{t_{burn}} F(t) \cdot dt}{M_{prop}} \rightarrow \frac{M_{prop}}{M_{0}} = 193_{kg}$$

$$M_{0} = 400_{kg}$$

$$F_{descent} = 270_{N}$$

MAE 5540 - Propulsion Systems

18

Medicinated & Flarospece Engineering

Bonus Question (1 pt)

- For the EGC Nozzle, Assuming the throat radius of curvature follows the rule
 - $R_1 \sim 0.75 \cdot D_{throat}$ (typical)
- And ...

UtahState

$$\frac{A_{exit}}{A^*} = 5.7 \qquad A^* = 4.5_{cm^2}$$
$$\left(p_{\infty}\right)_{operating} \approx 97_{kPa} \qquad \theta_{exit} = 15.4^{\circ}$$

- At the optimal (design) Operating Conditions, What is the nozzle length?
- How does this value compare to the minimum length Nozzle for the optimal (design) operating conditions (*apply 2/3rds safety rule*)
- Use γ^* from CEA analysis at optimal (design) chamber pressure, throat location
- Show calculations

UtahState UNIVERSITY Required Data for Report (2 pts for proper formatting)

- 1. CEA Program Setup (Step 1) (5 pts)
 - Screen Shots of program setup
 - Plots of Chamber conditions, T_0 , γ , M_w , c^* as a function of P0, %H2O2 Concentration
 - Plots of C_F, c^{*} and I_{sp} as a function of P0, %H2O2 Concentration ٠
 - Discussion of results •

2. **Optimal Performance Analysis** (*Step 2*) (3 *pts*)

- 90% H₂O₂ concentration, Plots of Nozzle exit pressure versus chamber pressure.
- Optimal Chamber pressure for EGC thruster.
- Engine Thrust and Isp Specific Impulse @Optimal Chamber pressure

3. Throttle Area Schedule (Step 3) (4 pts)

- Solution for Pintle $C_d A_{pintle}$ in terms of steady-state chamber pressure, $P_{\theta_{ss}}$
- Plot of injector area as a function of chamber pressure, P_0
- Plot of Massflow as a function of the Pintle Injector area
- Plot of *massflow as a function of thrust* for EGC Engine ٠
- Pintle Area Settings at Minimum and Maximum Thrust levels for EGC Engine •

4. Hover Control Schedule (Step 4) (4 pts)

- Plot of EGC thrust, total thrust, Isp for Hover Control as a function of time
- Plot of EGC Pintle Area for Hover Control as a function of time ٠
- Plot of Vehicle Mass, consumed propellant as a function of the time ٠

Total Burn Time (Step 5) (2 pts) 5.

- Mean Isp calculation
- Rocket equation, total burn time calculation
- Comparison to burn time from part 4.

Medicinated & Flarospece Engineering

Appendix, Hints and Suggestions

d) H2O2 Decomposition Characteristic Velocity (CEA)

MAE 5540 - Propulsion Systems

UtahState

Hints and Suggestions (2)

• Pick proper O/F Ratios to give correct peroxide concentrations

MAE 5540 - Propulsion Systems

Machanical & Flarospace

UtahState UNIVERSITY

Medicinites Consistence Engineering

Hints and Suggestions (3)

• CEA Problem Setup

•	Chemical Equilibrium with Applications	
File	Activity Help	Rocket Problem
File	Activity Help Problem* Reactant Only Omit Insert Output Case ID: Include ions Select ONE Problem Type: Assigned Temperature and Pressure - tp Combustion (Enthalpy and Pressure) - hp Assigned Temperature and Volume - tv Combustion (Internal Energy and Volume) - uv Rocket - rkt Shock tube - shock Chapman-Jouquet Detonation - det Assigned Entropy and Pressure - sp Assigned Entropy and Volume - sv Reactant Fuel-Oxidant Mixture if not specified in React Dataset	Pressure Unit bar initial Pres 20 25 30 35 40 45 50 60 Optional User-assigned Enthalpy: h/R (g-mol)K/(g of mixture) Optional Exit Conditions: Pi/Pe Sub Ae/At 5.7
	Select ONE Fuel-Oxidant Mixture: Values Percent fuel by weight - %f 2.333 Oxid-to-fuel weight ratios - o/f 4 Equ ratios in terms of f/o - phi,eq.ratio 5.666667 Chem equ ratios in terms of valences - r,eq.ratio 19	• Estim 1200 • Assign:
	Help Save Reset	Help Save Reset
MA	E 5540 - Propulsion Systems	23

UtahState UNIVERSITY

Medicinites Consistence Engineering

Hints and Suggestions (4)

• CEA Reactant Setup

Chemical Equilibrium with Applications					Chemical Equilibrium with Applications				tions							
File	Activity	Help							File	Activity	Help					
Problem Reactant* Only Omit Insert Output Temperature Unit Energy H/U Unit rel. wt. Image: Comparison of the state of the stat							Problem Reactant Only Omit Inset Energy Unit: siunits Species Produce Shortened Printout 1 2 Intermediate Output Output Output					uct Composition Unit: actions 3 4 5 6 7 8				
	fuel		H2O(L)		Amount 100		1 emp 298			Calc	ulate Therr	mal Transport	Properties			
	oxid		H2O2(L)		100		298			🗌 Trac	e Species V	/alue				
	Reactar	nts with use Name nem. Formu Num1 Sv	r-provideo An la with ato	d names a nount omic symk 2 Sym3	nd properi Temp ools,numbe	ties: Energyl rs for eac	H Energyl h reactant:	J		Select Pro Therm Select a P Pressure Tempera Density – Enthalpy Internal E Gibbs En Entropy – Molecula	operties for odynamic F Property: - p ture - t - rho - h Energy - u lergy - g - s r Weight(1/n	n) – m		Add	Selected Plot List: O/f p t m cp gam mach aeat cf	_
		Help		S	ave		Reset			Specific H Gammas Sonic Vel List spe	Heat - cp - gam ocity - son cites names Help	s separated by	a space: Save		ivac isp Reset	
MA	AE 554	40 - Pr	opulsi	on Sy	stems										24	

UtahState UNIVERSITY Hints	and St	ıggesti	ons (5)	engineering
• Example .out file Output	REACT	TANT	WT FRACTION	ENERGY TEMP
	OXIDANT H2O2(OXIDANT O2 OXIDANT H2O(L FUEL Acryl FUEL Styre FUEL Butad	(L) .) Lonitrile ene Jiene	(SEE NOTE) 0.6750000 0.2500000 0.0750000 0.2840000 0.3050000 0.4110000	KJ/KG-MOL K -188686.700 288.000 -297.948 288.000 -286594.763 288.000 98310.000 288.000 63310.000 288.000 32000.000 288.000
	0/F= 2.00000	%FUEL= 33.333333	R,EQ.RATIO= 1.936	098 PHI,EQ.RATIO= 2.569687
Peroxide/ABS combustion	C Pinf/P P, BAR T, K RHO, KG/CU M 3 H, KJ/KG - U, KJ/KG - G, KJ/KG - S, KJ/(KG)(K)	HAMBER THROAT 1.0000 1.8011 3.4474 1.9140 2144.43 1911.94 3.5538-1 2.2142-1 -2974.98 -3514.24 -3945.03 -4378.70 -31505.4 -28951.5 13.3044 13.3044	EXIT 11.616 0.29677 1313.11 4.9996-2 -4857.97 -5451.56 -22328.2 13.3044	
example	M, (1/n)	18.380 18.389	18.393	
example	(dLV/dLP)t - (dLV/dLT)p Cp, KJ/(KG)(K) GAMMAs SON VEL,M/SEC MACH NUMBER	1.00894 -1.00010 1.0089 1.0027 2.3845 2.2891 1.2388 1.2477 1096.2 1038.5 0.000 1.000	1.0000 2.2456 1.2521 862.1 2.251	
	TRANSPORT PROPERT CONDUCTIVITY IN	TIES (GASES ONLY) N UNITS OF MILLIWA	TTS/(CM)(K)	
	VISC,MILLIPOISE	0.71571 0.66042	0.50939	
	WITH EQUILIBRIUM	1 REACTIONS		
	Cp, KJ/(KG)(K) CONDUCTIVITY <u>PRANDTL</u> NUMBER	2.3845 2.2891 3.2251 2.7104 0.5292 0.5578	2.2456 2.0151 0.5677	
	WITH FROZEN REAC	TIONS		
	Cp, KJ/(KG)(K) CONDUCTIVITY <u>PRANDIL</u> NUMBER	2.2445 2.2020 2.8049 2.5405 0.5727 0.5724	2.0606 1.8847 0.5569	\ "Optimal" Values at
	PERFORMANCE PARAM	IETERS		🖉 exit pressure
	Ae/At CSTAR, M/SEC CF Tyac M/SEC	1.0000 1499.2 0.6927 1870 0	2.3700 1499.2 1.2944 2246 5	
MAE 5540 - Propulsion Systems	Isp, M/SEC	1038.5	1940.6	25

Medienteel & Flarospece Engineering

26

Hints and Suggestions (6)

• CEA Performance Parameters

$$\rightarrow c^{*} = \frac{\sqrt{\gamma R_{g} T_{0}}}{\gamma \sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{(\gamma-1)}}}} = \frac{c_{0}}{\gamma \sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{(\gamma-1)}}}} = \frac{\sqrt{\gamma R_{u}}}{\gamma \sqrt{\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{(\gamma-1)}}}} \sqrt{\frac{T_{o}}{M_{W}}}$$

$$C_{F} = \frac{Thrust}{P_{0} \cdot A^{*}} \qquad \left(T_{0}\right)^{*}_{throat} = T^{*} \cdot \left(\frac{\gamma^{*}+1}{2}\right)$$

$$I_{sp} = \frac{1}{g_{0}} c^{*} \cdot C_{F} \qquad \left(P_{0}\right)^{*}_{throat} = p^{*} \cdot \left(\frac{\gamma^{*}+1}{2}\right)^{\frac{\gamma^{*}}{\gamma^{*}-1}}$$

$$MAE 5540 - Propulsion Systems$$

UtahState UNIVERSITY

Mechanical & Ferospece Hints and Suggestions (8)

Thrust vs Massflow

675.0 PSIA Pin = CASE =

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H20(L)	1.000000	-285841.390	298.000
OXIDANT	H202(L)	1.000000	-187793.400	298.000

0/F= 9.00000 %FUEL= 10.000000 R,EQ.RATIO= 0.547468 PHI,EQ.RATIO= 0.000000

MAE 5540 - Propulsion Systems

Enaineerina

UNIVERSITY

Medianical & Flarcepeco Engineering

Hints and Suggestions (9)

• For Hover Control Schedule

@
$$t = 0 → M_0 = 400_{kg}$$

 $F_0 = g \cdot M_0 = 3112.68_N$

- Use *massflow vs EGC thrust schedule* from Step 3
- Integrate total massflow as a function of time to get propellant consumption

• Update Thrust to match current vehicle mass

$$M_{(t)} = M_0 - \int_0^t \dot{m} \cdot dt = M_0 - \int_0^t \dot{m}_{EGC} \cdot dt - 3 \cdot \dot{m}_{descent} \cdot t$$
²⁹

$$\dot{m}_{descent} \approx \frac{F_{descent}}{I_{sp_{opt}}} \rightarrow F_{descent} = 270_{N}$$

$$F_{EGC(t)} = g \cdot \left(M_0 - \int_0^t \dot{m}_{EGC} \cdot dt - 3 \cdot \frac{m_{descent}}{1000} \cdot t \right) - 3 \cdot F_{descent}$$

UtahState Hints and Suggestions (10)

• Block Diagram For Hover Control Schedule

UtahState UNIVERSITY

Medicinited & Flarospece Engineering

Hints and Suggestions (13)

• Minimum Length Conical Nozzle

