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An Introduction to the
Two-Dimensional Method of Characteristics

• Anderson, 
Chapter 11 pp. 377-403
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“Method of Characteristics”
• Basic principle of Methods of Characteristics

-- If supersonic flow properties
are known at two points in a flow field, 

-- There is one and only one set of properties 
compatible* with these at a third point, 

-- Determined by the intersection
of characteristics, or mach waves, from the two
original points. 

*Root of term “compatibility equations”
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“Method of Characteristics” (cont’d)

• Compatibility Equations relate the velocity magnitude 
and direction along the characteristic line.

• In 2-D and quasi 1-D flow, compatibility equations are 
Independent of spatial position, in 3-D methods, space
Becomes a player and complexity goes up considerably

• Computational Machinery for applying the method of
Characteristics are the so-called “unit processes”

• By repeated application of unit processes, flow field
Can be solved in entirety
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Unit Process 1: Internal Flow Field

1

2

3

C-

C+

• Conditions Known at Points {1, 2}

• Point {3} is at intersection of {C+, C-} characteristics 

θ +ν(M ) = Const ≡ K−

θ −ν(M ) = Const ≡ K+
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Unit Process 1: Internal Flow Field  (cont’d)

1

2

3

C-

C+

Point{1}→ {M1,θ1} known  →  

ν1 =
γ +1
γ −1

tan−1 γ −1
γ +1

M1
2 −1( )&

'
(

)(

*
+
(

,(
− tan−1 M1

2 −1

Along C−{ }→  θ1 +ν1 = const = K−( )1
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Unit Process 1: Internal Flow Field  (cont’d)

1

2

3

C-

C+

Point{2}→ {M 2 ,θ2} known  →  

ν2 =
γ +1
γ −1

tan−1 γ −1
γ +1

M 2
2 −1( )&

'
(

)(

*
+
(

,(
− tan−1 M 2

2 −1

Along C+{ }  →θ2 −ν2 = const = K+( )2
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Unit Process 1: Internal Flow Field  (cont’d)

1

2

3

C-

C+

Mach and
Flow Direction solved for at
Point 3

Point{3}→
θ1 +ν1 = θ3 +ν3

θ2 −ν2 = θ3 −ν3

%

&
'

(

)
*→

θ3 =
θ1 +ν1( ) + θ2 −ν2( )

2
=

K−( )1 + K+( )2
2

ν3 =
θ1 +ν1( ) − θ2 −ν2( )

2
=

K−( )1 − K+( )2
2

%

&

'
'
'
'

(

)

*
*
*
*

M 3 = Solve ν3 =
γ +1
γ −1

tan−1 γ −1
γ +1

M 3
2 −1( ),

-
.

/.

0
1
.

2.
− tan−1 M 3

2 −1
%

&
'
'

(

)
*
*

θ +ν(M ) = Const ≡ K−

θ −ν(M ) = Const ≡ K+
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Unit Process 1: Internal Flow Field  (cont’d)

But where is 
Point {3} ?

• {M,q} known at points {1,2,3}
---> {µ1,µ2,µ3} known
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Unit Process 1: Internal Flow Field  (concluded)

But where is 
Point {3} ?

• Slope of characteristics lines approximated by: 

Intersection locates point 3
slope C−{ } =

θ1 − µ1( ) + θ3 − µ3( )
2

slope C+{ } =
θ2 + µ2( ) + θ3 + µ3( )

2
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Unit Process 1: Internal Flow Example (cont’d)

• Solve for {x3,y3}

y3 − y1
x3 − x1

= tan slope C−{ }"# $%

y3 − y2
x3 − x2

= tan slope C+{ }"# $%

"

#

&
&
&
&

$

%

'
'
'
'

→
y3 = x3 − x1( ) tan slope C−{ }"# $% + y1
y3 = x3 − x2( ) tan slope C+{ }"# $% + y2

"

#
&
&

$

%
'
'
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Unit Process 1: Internal Flow Example (cont’d)

• Solve for {x3,y3}

x3 =
x1 ⋅ tan slope C−{ }#$ %&− x2 ⋅ tan slope C+{ }#$ %&+ y2 − y1( )

y3 =
tan slope C−{ }#$ %& ⋅ tan slope C+{ }#$ %& ⋅ x1 − x2( ) + tan slope C−{ }#$ %& ⋅ y2 − tan slope C+{ }#$ %& ⋅ y1

tan slope C−{ }#$ %&− tan slope C+{ }#$ %&

-
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Unit Process 1: Internal Flow Example

M1 = 2.0,  θ1 = 10o,  x1,y1{ } = 1.0,2.0{ }
M 2 = 1.75,  θ2 = 5o,  x2,y2{ } = 1.5,1.0{ }
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Unit Process 1: Internal Flow Example (cont’d)

• Point 1, compute

ν1,µ1, K−( )1{ }

ν1 =
γ +1
γ −1

tan−1 γ −1
γ +1

2.02 −1( )$
%
&

'&

(
)
&

*&
− tan−1 2.02 −1 = 26.37976o

µ1 =
180
π
sin−1 1

2.0
,

-.
/

01
= 30o

K−( )1 = θ1 +ν1 = 10
o + 26.37976o = 36.37976o
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Unit Process 1: Internal Flow Example (cont’d)

• Point 2, compute

ν2 ,µ2 , K+( )2{ }

ν2 =
γ +1
γ −1

tan−1 γ −1
γ +1

1.752 −1( )$
%
&

'&

(
)
&

*&
− tan−1 1.752 −1 = 19.27319o

µ2 =
180
π
sin−1 1

1.75
,

-.
/

01
= 34.84990o

K+( )2 = θ2 −ν2 = 5
o −19.27319o = −14.27319o
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Unit Process 1: Internal Flow Example (cont’d)

• Point 3 Solve for

θ3 =
K−( )1 + K+( )2

2
=
56.37976o + −14.27319o( )

2
= 21.0533o

ν3 =
K−( )1 − K+( )2

2
=
56.37976o − −14.27319o( )

2
= 35.3265o

θ3,ν3{ }

deg.

deg.
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Unit Process 1: Internal Flow Example (cont’d)

• Point 3 Solve for

M 3,µ3{ }

M 3 = Solve 35.3265
π
180

=
γ +1
γ −1

tan−1 γ −1
γ +1

M 3
2 −1( )$

%
&

'&

(
)
&

*&
− tan−1 M 3

2 −1
+

,
-
-

.

/
0
0

M3 = 1.96198  

sin µ( ) = 1
M

---> µ3= 30.6431o

25.3265
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Unit Process 1: Internal Flow Example (cont’d)

• Locate Point 3

• Line Slope Angles

slope C−{ } =
θ1 − µ1( ) + θ3 − µ3( )

2
=
10o − 30o( ) + 21.0533o − 25.2776o( )

2
= −12.1122o

slope C+{ } =
θ2 + µ2( ) + θ3 + µ3( )

2
=
5o + 34.8499o( ) + 21.0533o + 25.2776o( )

2
= 43.0904o

deg

deg
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Unit Process 1: Internal Flow Example (cont’d)

• Solve for {x3,y3}

x3=

= 2.17091

-
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Unit Process 1: Internal Flow Example (cont’d)

• Solve for {x3,y3}

y3=

=1.57856
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Unit Process 1: Internal Flow Example (concluded)

M1

θ1
x1
y1

"

#

$
$
$
$

%

&

'
'
'
'

=

2.0
10o

1.0
2.0

"

#

$
$
$
$

%

&

'
'
'
'

→

M 2

θ2
x2
y2

"

#

$
$
$
$

%

&

'
'
'
'

=

1.75
5o

1.5
1

"

#

$
$
$
$

%

&

'
'
'
'

→

M 3

θ3
x3
y3

"

#

$
$
$
$

%

&

'
'
'
'

=

2.3419
21.0533o

2.2745
1.726

"

#

$
$
$
$

%

&

'
'
'
'

1.96198
11.0533
2.17091
1.57856

!

"

#
#
#
#

$

%

&
&
&
&
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Using MOC for Supersonic Nozzle Design

22
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What happens when a nozzle expands
too quickly?

• i.e. …. A mess  … for a given
Operating condition there is 
only so fast we can expand a 
Conventional Nozzle
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Supersonic Nozzle Design

• Strategic contouring will “absorb” mach waves to give
isentropic flow in divergent section
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Using Method of Characteristics to Design a Bell Nozzle

• This approach “prescribes” the expansion section of the nozzle, 
and then uses M.O.C to design turning section to achieve wave 
cancellation at wall …. And ensure isentropic flow
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Supersonic Nozzle Design (cont’d)

• Rocket Nozzle
(Minimum Length)

• Bell Nozzle
(gradual expansion)

• Use compatibility eqs. to 
design boundary with shock 
free flow
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Method of Characteristics
• Supersonic “compatibility” equations

• Apply along “characteristic lines” in flow field, and 
insure isentropic flow … 
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Minimum Length Nozzle Design (cont’d)

• Find minimum length nozzle
with shock-free flow àqexit = 0

• Along C+ characteristic {d,c, exit}

C+

• Along C- characteristic {a,c, exit}

C-

• Add



MAE 5540 - Propulsion Systems 2929

Minimum Length Nozzle Design (cont’d)

• Find minimum length nozzle
with shock-free flow

• Along C- characteristic {a,c}
at point a

• But from Prandtl-Meyer
expansion at point a

0

C-

C+

θc = 0
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Minimum Length Nozzle Design (cont’d)

C+

C-

But as already shown

θwmax −νa = 0
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Minimum Length Nozzle Design (concluded)

• Criterion for Minimum 
Length Nozzle
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Typical Conical Nozzle Contour

Credit:                                       
Georgia Tech 

Dt = Throat diameter
R1 = Radius of curvature of nozzle contraction
N = Transition point from circular contraction to conical nozzle
LN = Nozzle Length
De = Exit diameter

• R1 ~ 0.75Dt   is typical

e --> expansion ratio (Aexit/A*) θnozzle
R1

XN
YN

θnozzle

R1

Y

X

θnozzle

Dt

R1

N

LN

De Dt

(XN,YN)
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Typical Conical Nozzle Contour
(Cont’d)

Y

X

θnozzle

Dt

R1

N

LN

De Dt

(XN,YN)
• Solve for Nozzle length 
in terms of other parameters
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Typical Conical Nozzle Contour
(Cont’d)• Using trig identities

• R1 ~ 0.75Dt   is typical    
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Minimum Length Conical Nozzle (1)

Y

X

θnozzle

Dt

R1

N

LN

De Dt

(XN,YN)

• Modify characteristic along C+ line from Cl to exit plane for non-zero Exit angle

• From earlier Minimum Length Nozzle derivation ,,, 
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Minimum Length Conical Nozzle (2)

Y

X

θnozzle

Dt

R1

N

LN

De Dt

(XN,YN)

• Simplify

“Two-thirds rule-of-thumb”
Applies strictly for conical nozzles
Generally applied as “safety factor” 
for most nozzles
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Minimum Length Conical Nozzle
• Example… given

Dthroat  = 1 cm
Ae/A* = 8
g = 1.2

A
A*

=
1
M

2
γ +1
"

#$
%

&'
1+

γ −1( )
2

M 2"

#$
%

&'
)

*
+

,

-
.

γ +1
2 γ −1( )

= 8.0 = 

2
1.2 1+! "
# $ 1 1.2 1−

2
3.1222( )+! "

# $
! "
# $

1.2 1+
2 1.2 1−( )

3.122
Mexit = 3.122
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Minimum Length Conical Nozzle
(cont’d)

Mexit = 3.122

180
π

1.2 1+
1.2 1−# $
% &

0.5 1.2 1−
1.2 1+

3.1222 1−( )# $
% &

0.5

# $
' (
% &

atan 3.1222 1−( )
0.5

( )atan−
# $
' (
% &=

= 67.06° θw Max
=
νexit
2

= 33.53°

Apply 2/3’rds rule
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Minimum Length Conical Nozzle
(cont’d)

• R1 ~ 0.75Dt   is typical …. R1=0.75 cm

= 

= 2.372 cm

 1.6055 cm 

 2.8284 cm  1.0000 cm 

• Any shorter
and you have
“problems”

2.372 cm
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Comparison of Cone and Bell Nozzles

Credit:                                       Georgia Tech 
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Bell Nozzle Contour Design

Credit:                                       Georgia Tech 

•
•

e --> expansion ratio (Aexit/A*)
LN

N
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Bell Nozzle Contour Design (cont’d)

Credit:                                       Georgia Tech 

•
•

e --> expansion ratio (Aexit/A*)

• Boundary Conditions
LN

qN

• qe

qN• 
Given
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Bell Nozzle Contour Design (cont’d)

• Evaluate position 
boundary condition at N

• Evaluate slope boundary condition at N
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Bell Nozzle Contour Design (cont’d)

• Rearranging slope boundary condition at N

• Evaluate Slope Boundary condition at e
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Bell Nozzle Contour Design (cont’d)

• Evaluate Position Boundary Condition at e

• And the Collection expressions are
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Bell Nozzle Contour Design (cont’d)

1)

2)

3)

4)

• 4 equations in 4 unknowns
• Analytical Solution is a 
Mess getting there .. But result
is OK
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SSME Nozzle example
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SSME Nozzle example (cont’d)

• Fit with Parabolic bell profile
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SSME Nozzle example (cont’d)

• Fit with Parabolic bell profile

qe =10°
qN =35 °
Dthroat =24.5 cm
Ae/A* =77.5

R1 =4.681cm

BOUNDARY
CONDITIONS

• Pretty
good model
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SSME Nozzle example (Cont’d)

• Mexit = 4.677 

= 

= 102.34° θw Max
=
νexit
2

= 51.17°

180
π

1.196 1+
1.196 1−# $
% &

0.5 1.196 1−
1.196 1+

4.6772 1−( )# $
% &

0.5

# $
' (
% &

atan 4.6772 1−( )
0.5

( )atan−
# $
' (
% &
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SSME Nozzle example (cont’d)

θw Max
=
νexit
2

• SSME  is
definitely not
a minimum  length
nozzle

0

035

51.17

= 51.17°

35/51.7 = 0.677

“two thirds rule”
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SSME Nozzle example (cont’d)

θw Max
=
νexit
2

= 51.17° • ~ “minimum  length SSME Nozzle

Rule of Thumb
Use qN < 2/3  qmax

“two thirds rule”


