## Homework 1

- Space Shuttle has the following mass fraction characteristics Weight (lb)
Gross lift-off . . . . . . . 4,500,000
External Tank (full) . . . . 1,655,600
External Tank (Inert) . . . . 66,000 SRBS (2) each at launch . . . 1,292,000 SRB inert weight, each . . . . 192,000

- 1) Calculate the actual propellant mass fraction as the shuttle sits on the pad

$$
\begin{gathered}
P_{m f}=\frac{M_{\text {propellant }}}{M_{{ }^{\text {ddry" }}}+M_{\text {payload }}} \\
P_{m f}=\frac{M_{\text {initial }}}{M_{\text {final }}}-1
\end{gathered}
$$

- Assume that Shuttle is being launched on a Mission to the International Space Station (ISS)
- ISS orbit altitude is approximately 375 km above Mean sea level (MSL), assume that Shuttle Pad 41A altitude approximately Sea level, Latitude is 28.5 deg. , ISS Orbit Inclination is 51.6 deg.
- Assume that the Earth is a perfect sphere with a radius of 6371 km


$$
\mu_{\oplus}=M_{\oplus} \cdot G=3.9860044 \times 10^{5} \frac{\mathrm{~km}^{3}}{\mathrm{sec}^{2}}
$$

2) The required Orbital Velocity
3) The "Boost Velocity" of the Earth
at the Pad 41A launch site (along direction of inclination)
4) Equivalent "Delta $V$ " required to lift the shuttle to altitude
5) Total "Delta V" required to reach the ISS orbit

MAE 5540-Propulsion Systems

UNIVERSITY

## Homework 1

- The 2 SRB's each burn for approximately 123 seconds and produce $2,650,000 \mathrm{lbf}$ thrust at sea level
- The 3 SSME engines each burn for $\sim 509.5$ seconds and each produces $454,000 \mathrm{lbf}$ thrust at sea level
- Each of the SSME's consume $1040 \mathrm{lbm} / \mathrm{sec}$ of propellant


6) Calculate the average specific impulses of the SRB's, the SSME's, and the Effective specific impulse of the Shuttle Launch System as a whole during the First 123 seconds of flight (ignore altitude effects)

$$
\text { Hint: } \quad I_{s p}=\frac{\int_{0}^{T_{\text {burn }}} F_{\text {thrust }} \cdot d t}{\mathrm{~g}_{0} \int_{0}^{\text {turn }} \dot{m}_{\text {propellant }} \cdot d t}=\frac{(\text { I } m p u l s e)_{\text {total }}}{\mathrm{g}_{0} M_{\text {propellant }}}
$$

## Homework 1 (contd)

7) Based on the calculated "Delta V" requirements for the mission, what would be the required propellant mass fraction For the space shuttle to reach orbit in a single stage assuming the mean launch specific impulse?
-- base this calculation on the mean $\mathrm{I}_{\mathrm{sp}}$ for the system during the first 123 seconds after launch

> 8) How does the shuttle manage to reach orbit? ....?

## Homework $1{ }_{\text {(contd) }}$

.... Next evaluate estimate launch conditions by breaking calculation into two "stages".. That is
i) Stage 1 ... first 123 seconds ... SRB's and SSME's burning ii) Stage 2 ... after SRB's jettisoned .. Only SSME's burning

## "stage 1"



$$
\Delta V_{\text {total }}=\Delta V_{\text {stage } 1}+\Delta V_{\text {stage } 2}+\Delta V_{\text {stage } 3} \ldots=\sum_{i=1} \Delta V_{\text {stage }_{-} i}
$$

## Homework 1 (conta)

i) Stage 1 ... first 123 seconds ... SRB's and SSME's burning
-- Assume shuttle flys ~ "vertically" during Stage 1 flight. ...
"stage 1"
Flight is vertical
9) Calculate "Available Delta V" for "stage 1" Based On Mean $I_{s p}$, and $P_{m f}$ (ignore altitude effects)
-- Include "gravity losses" and assume an $8 \%$ drag loss in the available propulsive "Delta $V$ "... assume $g(t) \sim g_{0}=9.8067 \mathrm{~m} / \mathrm{sec}^{2}$

$$
(\Delta V)_{\text {available }}=g_{0} \cdot I_{s p} \cdot \ln \left(\frac{M_{\text {initial }}}{M_{\text {final }}}\right)-(\Delta V)_{\text {graxity }}^{\text {Doss }} ⿵ 冂(\Delta V)_{\text {dragg }}
$$

$$
\longrightarrow(\Delta V)_{\text {drag }} \approx 0.08 \times g_{0} \cdot I_{s p} \cdot \ln \left(\frac{M_{\text {initala }}}{M_{\text {fnual }}}\right)
$$

MAE 5540-Propulsion Systems


