## Homework 2



- Consider Sub-Orbital Rocket Launch on Moon's Surface


## Homework 2

- Initial Launch Angle 60
degrees (consider constant while rocket is burning)
- Total Launch Mass, 20 kg
- Initial Propellant Mass, 5 kg
- Thrust 1000 N
- Isp =250 sec
- Acceleration of Lunar Gravity
- Calculate: (assume Constant)

$$
g_{\text {moon }}=1.622_{\frac{m}{\sec ^{2}}}
$$

- Standard Earth Gravity Acceleration

$$
g_{0_{\oplus}}=9.8067 \frac{m}{\sec ^{2}}
$$

- During Burn


## Applicable Equations

$$
\text { Assume } \theta_{\text {launch }}=\text { constant, } V_{0}=0 \rightarrow \text { at time } t:
$$

$$
V(t)=\left(g_{0_{\oplus}} \cdot I_{s p} \ln \left(\frac{M_{\text {initial }}}{M_{\text {initial }}-\dot{m} \cdot t}\right)-g_{0_{\text {moon }}} \cdot \sin \theta_{\text {launch }} \cdot t\right)
$$

$$
t_{\text {burn }}=\frac{M_{\text {prop }} \cdot g_{0_{\oplus}} \cdot I_{s p}}{F} \quad \frac{\partial h}{\partial t}=V(t) \cdot \sin \theta \quad \frac{\partial X}{\partial t}=V(t) \cdot \cos \theta
$$

- After Burnout

$$
\frac{E_{\text {mech }}}{M_{\text {fratal }} \cdot g_{0}}=\frac{\left(V_{\text {bumout }}\right)^{2}}{2 \cdot g_{0}}+h_{\text {burnout }}=\text { Const } \quad \frac{\partial X}{\partial t}=\text { Const }
$$

$$
V_{\text {horiz }} \neq 0 \ldots @ \text { apogee! }
$$

Kinetic Energy

Potential Energy

$$
=\mathbf{C}_{\ldots} \quad \frac{\partial \vec{V}}{\partial t}=\frac{\sum \vec{F}}{M_{\text {bumpout }}}
$$



