Homework 4 pata

Parabolic and Hyperbolic Trajectories

MAE 5540 - Propulsion Systems

Parabolic and Hyperbolic Trajectories (cont'd)

- United Federation of Planets starship Excelsior approaches Klingon outpost Altair 5 on a covert retaliatory bombing mission
- A cloaking device uses enormous energy \& Warp drive is non-operational with the cloak engaged
- All maneuvering must be done on impulse power alone
- The Excelsior uses a gravity assisted parabolic approach trajectory to Altair 5 in order to save on waning impulse power and insure a stealthy approach

Parabolic and Hyperbolic Trajectories (cont'd)

- After dropping photo-torpedos, Captain Checkov wants to get out the sphere of influence (SOI) ofAltair 5 as fast as possible without being spotted
- The Excelsior has enough impulse power left for one big burn before, having to recharge the dilithium crystals
- The best way to "get out of town fast" is to fire impulse engines at closest approach to Altair 5 -- taking advantage of the gravity assist to give the highest approach speed without using impulse power and then use impulse power to depart on a hyperbolic trajectory at angle of 45 degrees
- What is the "Delta- V " required to depart on a Hyperbolic trajectory with an asymptotic departure angle of 45 degrees

Homework: 4a

Parabolic and Hyperbolic Trajectories (cont'd)

- Hint 1: For a Parabolic trajectory
\mathbf{r} is measured from the parabolic focus to the location of the Excelsior
- Hint 2: For a Hyperbolic trajectory
\mathbf{r} is measured from the right (perifocus) focus to the location of the Excelsior

Homework: 4a

Parabolic and Hyperbolic Trajectories (concluded)

- Hint 3: For a Parabolic to Hyperbolic trajectory transfer

$$
\text { " } \Delta V^{\prime \prime}=V_{\mathrm{h}}-V_{\mathrm{p}}=V_{\mathrm{p}}\left[\frac{\mathrm{~V}_{\mathrm{h}}}{\mathrm{~V}_{\mathrm{p}}}-1\right]
$$

- Hint 4: At closest apprach, the distance from the parabolic focus to the Excelsior must equal the distance from the Hyperbolic right focus to the Excelsior
- Your answer should be expressed in terms μ and rmin (closest approach distance)

Homework: $\underset{\text { compound Orbits }}{\text { 4b }}$
 (cont'd)

- Starship Enterprise orbits alien moon Tralfamador in a circular orbit of radius as
- Moon orbits alien planet Strangelove in circular orbit with radius a_{p}
- Alien GPS system orbiting moon gives position relative to Tralfamadorian -fixed coordinate system.
- Due to gravitational damping Tralfamador, always keeps the same face directed towards Strangelove

Homework• 4b
 Homework:Compound Orbits

(cont'd)

- Compute the position vector of the Enterprise relative to Strangelove ... in the Strangeloveian -fixed coordinate system -- $\overline{\mathrm{R}}_{\mathrm{sp}}$
- Solution should have $\mathbf{a}_{\mathrm{s}}, \mathrm{a}_{\mathrm{p}}, \theta_{\mathrm{s}}, \theta_{\mathrm{p}}$ as parameters

$$
\overline{\mathrm{I}}_{\mathrm{s}}=\bar{i}_{\mathrm{r}} \mathrm{l}_{\text {planet }}
$$

Hint 1 :

$$
\bar{j}_{s}=\left(\bar{i}_{\theta}\right. \text {)planet }
$$

Hint 2: $\cos [a+b]=\cos [a] \cos [b]-\sin [a] \sin [b]$

$$
\sin [\mathrm{a}+\mathrm{b}]=\sin [\mathrm{a}] \cos [\mathrm{b}]+\cos [\mathrm{a}] \sin [\mathrm{b}]
$$

Hint 3: $\vec{R}_{s p}=\vec{R}_{s}+\vec{R}_{p}$

$$
\begin{aligned}
& \vec{R}_{s}=a_{s} \cdot \vec{i}_{r_{\text {raon }}} \\
& \vec{R}_{p}=a_{p} \cdot \vec{r}_{r_{p \text { pene }}}
\end{aligned}
$$

Homework: ${ }^{\mathbf{4 b}}{ }^{\mathbf{4 b}}$ continued Orbits

- Compute the velocity vector of the Enterprise relative to Strangelove ... in the Strangeloveian -fixed coordinate system.

$$
\begin{aligned}
& \overline{\mathrm{V}}_{\mathrm{sp}}=\frac{d}{d t}[\overline{\mathrm{R}} \mathrm{Tp}] \frac{\mathrm{Xt}}{} d\left[\overline{\mathrm{R}}_{\mathrm{s}}+\overline{\mathrm{R}}_{\mathrm{p}}\right] \\
& \text { Hint 4: } \\
& \omega_{\mathrm{s}} \equiv \frac{d}{d \mathrm{t}}\left[\theta_{\mathrm{s}}\right] \quad \omega_{\mathrm{p}} \equiv \frac{d}{d \mathrm{t}}\left[\theta_{\mathrm{p}}\right]
\end{aligned}
$$

Transtate

Homework: ${ }^{4 b}$

- Givens

Parameter Orbit Radius Planetary Mass

Tralfamador
5000 km
0.1
\oplus Mass
Strangelove $\quad 250,000 \mathrm{~km}$
(also look at $25,000 \mathrm{~km}$)

- Plot the Enterprise Position and Velocity Components in Strangelovian Coordinates $\left\{\vec{i}_{p}, \vec{j}_{p}\right\}$, as a function of time
- Show at least 1 complete period
- Assume Initial $\left\{\theta_{p}, \theta_{s}\right\}=0$

Coordinate Transformations:

