Project 2 (16 pts)

```
Build Unsteady Model of "Pike" .. Use Integrator of your choice
Part 1, Cylindrical Port (7 points total)
Calculate and Plot vs time 1 Point each for Cylindrical Port
Chamber pressure profile
Regression rate profile
Massflow rate (compare to choking massflow) show both plots 6 pts Mass depletion vs time
```


Thrust Profile

Calculate and Show:

```
Effective Mean Specific Impulse
Allow:
St. Robert's Parameter Input
Variable Step Size
Variable Thermodynamic Properties (as inputs to the problem)
Erosive burn model for cylindrical port (Not Bates grain)
1 additional Point for Correct Erosive Burn Plots (All of Those Plots Listed Above)
MAE 5540-Propulsion Systems

\section*{UtahState \\ UNIVERSITY}

Part 1, cylindrical port
Fuel Grain Geometry
\(L_{0}=35 \mathrm{~cm}\)
\(D_{0}=6.6 \mathrm{~cm}\)
\(D_{0}=3 \mathrm{~cm}\)
\(\rho_{\text {propellant }}=1260 \mathrm{~kg} / \mathrm{M}^{3}\)

Nozzle Geometry
\(A^{*}=1.887 \mathrm{~cm}^{2}\)
\(A_{\text {exii }} / A^{*}=4.0\).
\(\theta_{\text {exit }}=20 \mathrm{deg}\).

Assume ends are burn inhibited
MAE 5540-Propulsion Systems

Project 2 (2)


\section*{Project 2 (3)}

\section*{Combustion Gas Properties}
\(\gamma=1.18\)
\(M_{W}=23_{\mathrm{kg} / \mathrm{kg}-\mathrm{mol}}\)
\(T_{0}=2900 \mathrm{~K}\)


Propertiss of
Propsillent Prodscts
\(a=0.132 \mathrm{~cm} /\left(\sec -\mathrm{kPa}{ }^{n}\right)\)
\(n=0.16\)
\(M^{\text {crit }}=0.3\)
\(k=0.2\)
(cylindrical port only)


Part 2, Bates Grain (Repeat
Project 2 (4)

Fuel Grain Geometry

\author{
( 6 pts, 1 Point \\ for each correct plot)
}
\(L_{0}=35 \mathrm{~cm}(3 \times 11.667 \mathrm{~cm})\)
\(D_{0}=6.6 \mathrm{~cm}\)
\(D_{0}=3 \mathrm{~cm}\)
\(\rho_{\text {propellant }}=1260 \mathrm{~kg} / \mathrm{M}^{3}\)
Animal Works \({ }^{T M}\), L700 Motor Geometry Repeat results
Nozzle Geometry
\(A^{*}=1.887 \mathrm{~cm}^{2}\)
\(A_{\text {exit }} / A^{*}=4.0\)
\(\theta_{\text {exit }}=20 \mathrm{deg}\). Using bates grain With 3 segments


Assume ends are not! burn inhibited
MAE 5540 - Propulsion Systems

\section*{Project 2 (5)}

Combustion Gas Properties
\(\gamma=1.18\)
\(M_{W}=23_{\mathrm{kg} / \mathrm{kg}-\mathrm{mol}}\)
\(T_{0}=2900 \mathrm{~K}\)

\section*{Burn Parameters}
\(a=0.132 \mathrm{~cm} /\left(\sec -k P a^{n}\right)\)
\(n=0.16\)
\(M^{\text {crit }}=0.3\)
\(k=0.0\)
(Bates grain only)

Burn Parameters


Propollizn Probsets


Assume no erosive’ burning

Effective gamma
1.18

Effective MW
23

Idealized Flams Temperature, deg. K
2900

Part 3, Sensitivity Analysis (2 Pts)
Examine sensitivity of calculations to burn rate parameters, \(\{a, n\}\) Critical Mach number (for erosion) ... cylindrical port
Only, Assume bates grain does not burn erosively Cylindrical and Bates Grain, Show
Chamber Pressure and Thrust Plots

Plot Regression rate versus Chamber pressure
Prepare report stating your results and conclusions
1-Point for comprehensivness and neatness

\section*{Cylindrical Port Hints}

Integrate Ballistic Equation to Calculate Chamber pressure (P0), Regression rate, and Port Radius
\[
\left[\begin{array}{c}
\dot{P}_{0} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{c}
\left.\left(\frac{A_{\text {burn }} \cdot \dot{r}}{V_{c}}\right) \cdot\left(\rho_{\text {propellant }} \cdot R_{g} \cdot T_{0}-P_{0}\right)-\left(\frac{A^{*}}{V_{c}}\right) \cdot P_{0} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{0} \cdot\left(\frac{2}{\gamma+1}\right)^{\left(\frac{\gamma+1}{\gamma-1}\right)}}\right] \\
a \cdot P_{0}^{n} \ldots \text { or } \ldots a \cdot P_{0}^{n} \cdot 1+k \cdot\left(\frac{M_{\text {port }}}{M_{\text {crit }}}\right) /(1+k)
\end{array}\right]
\]

Initial Conditions:
\[
\text { Assume } \rightarrow\left[\begin{array}{c}
P_{\text {ambient }}=86_{k P_{a} a}(\text { USU Altitude }) \\
P_{o}(0)=2 \cdot P_{\text {ambient }} \\
r(0)=r_{\text {port }}(3 \mathrm{~cm}) \\
\text { Port Geometry: }
\end{array}\right]
\]

Calculate Massflows:
choking massflow \(\rightarrow \dot{m}_{\text {throat }}=\quad A^{*} \cdot \frac{P_{0}}{\sqrt{T_{0}}} \cdot \sqrt{\frac{\gamma}{R_{g}} \cdot\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}\)
\[
\left[\begin{array}{c}
r \equiv \text { Port Radius } \\
L_{\text {port }} \equiv \text { Port Length }
\end{array}\right]
\]

\section*{Port Geometry:}
\(\rightarrow\) Cylindrical Port:
\[
A_{b u r n}=2 \cdot \pi \cdot r \cdot L_{p o r t}
\]
\begin{tabular}{l}
\begin{tabular}{l} 
Propellant massflow \\
due to fuel pyrolysis
\end{tabular} \\
Calculate Port Mach Number:
\end{tabular}\(\rightarrow \dot{m}_{\text {prop }}=\rho_{p} \cdot A_{\text {burn }} \cdot \dot{r} \rightarrow\left[\begin{array}{c}\dot{r}=a \cdot P_{0}^{n} \text { (Non-erosive Burn) } \\
\dot{r}=a \cdot P_{0}^{n} \cdot \frac{1+k \cdot\left(\frac{M_{\text {port }}}{M_{\text {crit }}}\right)}{1+k} \text { (Erosive Burn) }\end{array}\right.\)
\[
\underline{V_{c}=\pi \cdot r^{2} \cdot L_{p o r t}}
\]

Calculate Port Mach Number:
\(M\)
Calculate Consumed Propellant Mass:
\(\frac{A_{\text {port }}}{A^{*}}=\left(\pi \cdot r^{2}\right)=\frac{1}{M_{\text {port }}} \cdot\left[\left(\frac{2}{\gamma+1}\right) \cdot\left(1+\frac{\gamma-1}{2} M_{\text {port }}{ }^{2}\right)\right]^{\frac{1}{2}\left(\frac{\gamma+1}{(\gamma-1}\right)} \rightarrow\) subsonic Mach Solution
\[
\begin{gathered}
M_{\text {prop }}(t)=\int_{0}^{t} \dot{m}_{\text {prop }}(\tau) \cdot d \tau \\
M_{\text {prop }}(t) \geq\left(M_{\text {prop }}\right)_{\text {total }} \rightarrow \dot{r}=0
\end{gathered}
\]

\section*{MAE 5540 -Propulsion Systems}

\section*{UtahState \\ UNIVERSITY}

\section*{Bates Grain Hints}

Integrate Ballistic Equation to Calculate Chamber pressure (P0), Regression rate, and Port Radius
\[
\left[\begin{array}{c}
\dot{P}_{0} \\
\dot{r}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{A_{\text {burn }} \cdot \dot{r}}{V_{c}}\right) \cdot\left(\rho_{\text {propellant }} \cdot R_{g} \cdot T_{0}-P_{0}\right)-\left(\frac{A^{*}}{V_{c}}\right) \cdot P_{0} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{0} \cdot\left(\frac{2}{\gamma+1}\right)^{\left(\frac{\gamma+1}{\gamma-1}\right)}} \\
a \cdot P_{0}^{n}
\end{array}\right] \text { Assume } \rightarrow\left[\begin{array}{c}
\text { Initial Conditions: } \\
P_{\text {ambient }}=86_{k P a}(U S U \text { Altitude }) \\
P_{0}(0)=2 \cdot P_{\text {ambient }} \\
r(0)=r_{\text {port }}(3 \mathrm{~cm})
\end{array}\right]
\]

Calculate Massflows:
choking massflow \(\rightarrow \dot{m}_{\text {throat }}=\quad A^{*} \cdot \frac{P_{0}}{\sqrt{T_{0}}} \cdot \sqrt{\frac{\gamma}{R_{g}} \cdot\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \quad\) Port Geometry:


\section*{MAE 5540-Propulsion Systems}

\section*{Thrust, \(\mathrm{I}_{\mathrm{sp}}\) Calculations, Hints}

For the nozzle exit
\(\frac{A_{\text {ext }}}{A^{t}}=\frac{1}{M_{\text {exit }}} \cdot\left[\left(\frac{2}{\gamma+1}\right) \cdot\left(1+\frac{\gamma-1}{2} M_{\text {exit }}{ }^{2}\right)\right]^{\frac{1}{2}\left(\frac{\gamma+1)}{(\gamma-1)}\right)} \rightarrow\) supersonic
\(\rightarrow T_{\text {exit }}=\frac{T_{0}}{1+\frac{\gamma+1}{2} M_{\text {exit }}^{2}}\)
\(\rightarrow V_{\text {ext }}=M_{\text {exit }} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{\text {ext }}}\)

Effective Specific Impulse
\(\left(I_{\text {sp }}\right)_{\text {eff }}=\frac{I_{\text {mpule }}\left(t_{\text {turn }}\right)}{g_{0} \cdot M_{\text {pop }}\left(t_{\text {buan }}\right)}\)

UtahState
UNIVERSITY

\section*{Careful with Units!}

\(\rho_{\text {propellant }} \cdot R_{g} \cdot T_{0} \rightarrow\) Must have same Units as \(\mathrm{P}_{0}!\)
\(\frac{A^{*}}{V_{c}} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{0}} \sim\) seconds!

\section*{State Equation Formulation of Problem}
\(\left[\begin{array}{c}\dot{P}_{0} \\ \dot{r}\end{array}\right]=\left[\begin{array}{c}\left(\frac{A_{\text {burn }} \cdot \dot{r}}{V_{c}}\right) \cdot\left(\begin{array}{c}\left(\rho_{\text {propellant }} \cdot R_{g} \cdot T_{0}-P_{0}\right)-\left(\frac{A^{*}}{V_{c}}\right) \cdot P_{0} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{0} \cdot\left(\frac{2}{\gamma+1}\right)^{\left(\frac{\gamma+1)}{\gamma-1}\right)}} \\ \text { Careful with Units! } \\ a \cdot P_{0}^{n}\end{array}\right] \\ \text { Careful with Units! }\end{array}\right]\)
\(\left[\begin{array}{l}P_{0} \\ r\end{array}\right]_{t=0}=\left[\begin{array}{c}P_{\text {ambient }} \\ \frac{d_{0}}{2}\end{array}\right] \rightarrow s(t)=\int_{0}^{t} \dot{r} \cdot d t \approx 2 \cdot r(t)-d_{0}\left[\begin{array}{c}k \equiv \text { Erosion Constant }_{(\text {GRAAN DEFENDENT })} \\ M_{\text {crit }} \equiv \text { Critical Port Mach Number }^{2}\end{array}\right]\)
\(\rightarrow\) State Equations for Erosive Burning :
\(\left[\begin{array}{c}\dot{P}_{0} \\ \dot{r}\end{array}\right]=\left[\begin{array}{c}\left(\frac{A_{\text {burn }} \cdot \dot{r}}{V_{c}}\right) \cdot\left(\rho_{\text {propellant }} \cdot R_{g} \cdot T_{0}-P_{0}\right)-\left(\frac{A^{*}}{V_{c}}\right) \cdot P_{0} \cdot \sqrt{\gamma \cdot R_{g} \cdot T_{0} \cdot\left(\frac{2}{\gamma+1}\right)^{\left(\frac{\gamma+1}{(\gamma-1)}\right.}} \\ \left(1+k \cdot \frac{M_{\text {port }}}{M_{\text {crit }}}\right) \cdot a \cdot P_{0}^{n} /(1+k)\end{array}\right]\)
\(\left[\begin{array}{l}P_{0} \\ r\end{array}\right]_{t=0}=\left[\begin{array}{c}P_{\text {ambient }} \\ \frac{d_{0}}{2}\end{array}\right] \rightarrow s(t)=\int_{0}^{t} \dot{r} \cdot d t \approx 2 \cdot r(t)-d_{0}\)

\section*{State Equation Formulation of Problem (2)}
\(\rightarrow\) Cylindrical Port :
\[
\left.\begin{array}{l}
A_{\text {burn }}=2 \cdot \pi \cdot r \cdot L_{\text {port }} \\
V_{c}=\pi \cdot r^{2} \cdot L_{\text {port }}
\end{array}\right] \rightarrow\left[\begin{array}{c}
r \equiv \text { Port Radius } \\
L_{\text {port }} \equiv \text { Port Length }
\end{array}\right]
\]
\(\rightarrow\) Bates Grain:
\[
\begin{aligned}
& A_{\text {burn }}=N \cdot \pi \cdot\left\{\left[\frac{D_{0}^{2}-\left(d_{0}+2 \cdot s\right)^{2}}{2}\right]+\left(L_{0}-2 \cdot s\right) \cdot\left(d_{0}+2 \cdot s\right)\right\} \\
& V_{c}=\frac{N \cdot \pi}{4} \cdot\left\{\left(d_{0}+2 \cdot s\right)^{2} \cdot\left(L_{0}-2 \cdot s\right)+D_{0}^{2} \cdot 2 s\right\} \\
& \text { Do NOT! Use Erosive Burning for Bates Grain }
\end{aligned}
\]

\section*{State Equation Formulation of Problem (3)}

\section*{Calculating Chamber Mach Number}

Erosive Burning
\[
\begin{aligned}
& \rightarrow \frac{V_{c} / L_{\text {port }}}{A^{*}}=\frac{1}{M_{\text {port }}} \cdot\left[\left(\frac{2}{\gamma+1}\right) \cdot\left(1+\left(\frac{\gamma-1}{2}\right) \cdot M_{\text {port }}^{2}\right)\right]^{\left(\frac{\gamma+1}{2 \cdot(\gamma-1)}\right)} . \\
& \ldots \text { Subsonic Branch Solution! }
\end{aligned}
\]

Do NOT! Use Erosive Burning for Bates Grain

\section*{Cylindrical Port: Decoupled Model}
- Use Trapezoidal rule or Runge-Kutta to integrate
\[
\frac{\partial P_{0}}{\partial t}=\frac{A_{b u r n} a P_{o}^{n}}{V_{c}}\left[\rho_{p} R_{g} T_{0}-P_{0}\right]-P_{0}\left[\frac{A^{*}}{V_{c}} \sqrt{\gamma R_{g} T_{0}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{(\gamma-1)}}}\right]
\]
- Recursive propagation of chamber diameter
\[
\begin{aligned}
& R_{\text {burn }_{k+1}}=R_{i_{\text {initial }}}+\int_{0}^{(k+1) \Delta t} \dot{r} d t=R_{i_{i_{\text {intial }}}}+\int_{0}^{(k) \Delta t} \dot{r} d t+\int_{(k) \Delta t}^{(k+1) \Delta t} \dot{r} d t \rightarrow \\
& R_{\text {burn }_{k+1}}=R_{b_{b u r n_{k}}}+\int_{(k) \Delta t}^{(k+1) \Delta t} \dot{r} d t \approx R_{b_{b u r n_{k}}}+\dot{r} \Delta t=R_{b u n_{k}}+a P_{o}^{n} \Delta t
\end{aligned}
\]

\section*{Bates grain Port: Decoupled Model}
- Use Trapezoidal rule or Runge-Kutta to integrate
\[
\begin{aligned}
& \frac{\partial P_{0}}{\partial t}=\frac{A_{\text {burn }} a P_{o}^{n}}{V_{c}}\left[\rho_{p} R_{g} T_{0}-P_{0}\right]-P_{0}\left[\frac{A^{*}}{V_{c}} \sqrt{\left.\gamma R_{g} T_{0}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{(\gamma-1)}}\right]}\right. \\
& \dot{r}=a \cdot P_{o}^{n} \\
& \left.s_{\text {regression }}=\dot{\int_{t}} \cdot \dot{d t}\right] \rightarrow \\
& \left(A_{\text {burn }}\right)_{\text {total }}=N \cdot \pi \cdot\left[\frac{\left(D_{0}^{2}-\left(d_{0}+2 \cdot s\right)^{2}\right)}{2}+\left(L_{0}-2 \cdot s\right) \cdot\left(d_{0}+2 \cdot s\right)\right] \\
& \left(V_{o l}\right)_{\text {otatal }}=\frac{N \cdot \pi}{4}\left[\left(d_{0}+2 \cdot s\right)^{2} \cdot\left(L_{0}-2 \cdot s\right)+D_{0}^{2} \cdot(2 \cdot s)\right]
\end{aligned}
\]```

