Major Project 1 ... 16 Points Total! Look at problem of transferring satellite to MEO (GPS) from Initial LEO Orbit - Code Continuous Thrust Example - Aleo ~ 8530 km - AMEO ~ 13,200 km - Isp ~ 2000 sec - Thrust ~ 10 Nt ... Implement both Trapezoidal and RungeKutta Integration schemes ... compare algorithm performance as Time interval becomes progressively larger - Include a Thrust Termination Criterion which puts you in the proper final transfer orbit (apogee tangent to desired MEO Orbit) - Calculate Impulse ΔV and Propellant Mass Required to Circularize Final Orbit for continuous thrust problem .. assume final delta V is delivered impulsively with Apogee Kick Motor Isp = 270 sec Ignore atmospheric drag # Project 1 (cont'd) ### a.1) Continuous Small Thrust, Simulation (6 pts) ### Terminate thrust when $$R_{apogee} = a \cdot (1+e)$$ $$= 13,200 km$$ #### Calculate: - Propellant mass req. For continuous transfer - Propellant mass req. For kick delta V (impulsive) (orbit circularization) - 3) Final mass = 1000 kg Orbit coast # a.2) Continuous Small Thrust (1 pt) ... Implement both Trapezoidal and Runge-Kutta Integration schemes ... Assume continuous thrust transfer to transfer orbit apogee using EP device, final orbit insertion using high thrust kick motor ... compare algorithm performance as Time interval ΔT becomes progressively larger ... Is there a point where algorithm blows up? ### Project 1 (cont'd) # a.3) Continuous Small Thrust, Simulation to Hohmann Transfer Comparisons (1 pt) ... compare continuous thrust propellant mass calculations against Hohmann transfer calculations .. Assuming impulsively delivered Delta V for each burn Burn 1: Isp = 2000 sec Burn 2: Isp = 270 sec ... what can you conclude about the accuracy of the rocket equations and the impulsive Delta V assumption when applied to a long duration non-impulsive burn? # a.3) Impulsive Hohmann Transfer ... • Calculate △V and Consumed Mass, Including Kick # **UtahState UNIVERSITY** ## Impulsive Hohmann Transfer (cont'd) Small thrust transfer comparison • Compare to continuous thrust transfer | | Propellant Mass kg | Propellant Mass kg | |--|-------------------------------|------------------------------| | | Continuous Thrust
Transfer | Impulsive Thrust
Transfer | | Burn 1 $I_{sp} = 2000 \text{ sec}$ $F = 10 \text{ N}$ | | | | $Burn 2$ $I_{sp} = 270 \text{ sec}$ $F = 2000 \text{ N}$ | | | | Total | | | # Part b.1) Continuous Large Thrust Analysis (3 pts) - F = 2000 N, Isp = 270 sec - Continuous First Burn - Terminate Thrust When $a \cdot (1+e) \sim 13,200 \text{ km}$ - • Impulsive Second (Kick) Burn - Required $M_{final} = 1000 \text{ kg}$ # Part b.1) Continuous Large Thrust Analysis - → Calculate - Propellant Mass Required for *Continuous* Transfer Burn - ΔV, Propellant Mass Required for *Impulsive* Final Kick Burn - $M_{final} = 1000 \text{ kg}$ # Part b.2) Large Thrust Hohmann Transfer Analysis (1 pt) ... compare continuous thrust propellant mass and ΔV Calculations against Hohmann transfer calculations .. Assuming impulsively delivered Delta V for each burn Burn 1: Isp = 270 sec Burn 2: Isp = 270 sec ... what can you conclude about the accuracy of the rocket equations and the impulsive Delta V assumption when applied to a long Short-Duration (compared to orbit Period), Non-impulsive burn # Part b.2) Large Thrust Hohmann Transfer Analysis Hohmann Transfer: $I_{sp}=270 \text{ sec}$ F_{thrust} =2000 Nt • Impulsive Burn Calculations # Part b) Large Thrust Hohmann Transfer Analysis • Compare to one-burn continuous thrust transfer | | Propellant Mass kg | Propellant Mass kg | |---|-------------------------------|------------------------------| | | Continuous Thrust
Transfer | Impulsive Thrust
Transfer | | $\begin{array}{rcl} Burn \ 1 \\ I_{sp} &= 270 \ sec \\ F &= 2000 \ N \end{array}$ | | | | $\begin{array}{rl} Burn \ 2 \\ I_{sp} &= 270 \ sec \\ F &= 2000 \ N \end{array}$ | | 266.80 kg | | Total | | | ## Project 1 (cont'd) - Part c.1) Two-Burn Grand Challenge (2 pts) - Assume BOTH burns are performed non-impulsively Terminate burn thrust when Terminate Burn 1 Thrust When $$R_{apogee} = a \cdot (1+e) \sim 13,200 \text{ km}$$ - You decide when and how long to initiate the second burn to circularize the orbit - Assume for large thrust 2000 Nt thrust (both burns) ... Isp = 270 sec - Calculate required propellant mass for Burn1, Burn2 (and Total) - Use integrator of your choice ... calculate actual delivered Delta V Based on consumed mass ... using rocket equation # • Part c.1) Grand Challenge • Part c.1) Two-Burn Grand Challenge • Terminate Burn 2 Thrust Final Orbit $R_{apogee} \sim 13,200 \text{ km}$ MAE 5540 - Propulsion Systems # Project 1 (cont'd) # Continuous Large Thrust Problem # c.2) Final Summary (1 pt) ... compare Hohmann Transfer for 2000 Nt Rocket (assuming impulsive thrust) Versus 2000 Nt rocket with Non Impulsive Thrust Also compare consumed masses to High I_{sp} Continuous Thrust transfer ... what can you conclude about the accuracy of the rocket equation and the impulsive Delta V assumption when applied to a short duration non-impulsive burn? ... what can you conclude about the effect of $I_{sp \text{ on}}$ required propellant mass? ## Impulsive Hohmann Transfer (cont'd) Large thrust transfer comparison • Compare to two-burn continuous thrust transfer | | Propellant Mass kg | Propellant Mass kg | |---|-------------------------------|------------------------------| | | Continuous Thrust
Transfer | Impulsive Thrust
Transfer | | $\begin{array}{rcl} Burn \ 1 \\ I_{sp} &= 270 \ sec \\ F &= 2000 \ N \end{array}$ | | | | $\begin{array}{rcl} Burn \ 2 \\ I_{sp} &= 270 \ sec \\ F &= 2000 \ N \end{array}$ | | | | Total | | | # + 1 Point for neatness and completeness of presentation/report ## **Project hints** Medianica ८ जिल्लाहरू Engineering # Collected Equations, Ballistic Trajectory #### **Project Hints (1)** Position within initial orbit: $$\begin{bmatrix} r \\ v \end{bmatrix}_0 = \begin{bmatrix} \frac{a_0 (1 - e_0^2)}{1 + e_0 \cos(v_0)} \\ v_0 \end{bmatrix} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_0 = 0 \\ \text{can assume} \rightarrow v_0 = 0 \rightarrow a_0 = r_0 \end{bmatrix}$$ Angular velocity within initial orbit: $$\omega_{0} = \frac{\sqrt{\mu} \left[1 + e_{0} \cos(v_{0}) \right]^{2}}{\left[a_{0} \left(1 - e_{0}^{2} \right) \right]^{3/2}} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_{0} = 0 \\ \text{can assume} \rightarrow v_{0} = 0, a_{0} = r_{0} \end{bmatrix}$$ $$\omega_{0} = \frac{\sqrt{\mu} \left[1 + e_{0} \cos(v_{0}) \right]^{2}}{\left[a_{0} \left(1 - e_{0}^{2} \right) \right]^{3/2}} = \frac{1}{r_{0}} \sqrt{\frac{\mu}{r_{0}}}$$ #### **Project Hints (2)** Linear Velocity within initial orbit: $$\begin{bmatrix} V_r \\ V_v \end{bmatrix}_0 = r_0 \omega_0 \begin{bmatrix} \frac{e_0 \sin[v_o]}{[1 + e_0 \cos(v_o)]} \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} \text{circular orbit} \rightarrow e_0 = 0 \\ \text{can assume} \rightarrow v_0 = 0, a_0 = r_0 \end{bmatrix}$$ $$\begin{bmatrix} V_r \\ V_\nu \end{bmatrix}_0 = \begin{bmatrix} 0 \\ r_0 \omega_0 \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{\frac{\mu}{r_0}} \end{bmatrix}$$ #### **Project Hints (3)** Instantaneous (no-nonconservative foreces acting) Keplerian orbit $\rightarrow given: \begin{bmatrix} V_r \\ V_v \end{bmatrix}, \begin{bmatrix} r \\ v \end{bmatrix}$ $$a = \frac{\mu}{\left[\frac{2\mu}{r} - \left[V_r^2 + V_v^2\right]\right]}$$ $$e = \frac{r}{\mu} \sqrt{\left(V_v^2 - \frac{\mu}{r}\right)^2 + \left(V_r V_v\right)^2}$$ $$r_{perigee} = a(1 - e)$$ $$r_{apogee} = a(1+e)$$