

Rocket Science 103: Cold-Gas Thruster Analysis

Newton's Laws as Applied to "Rocket Science"

... its not just a job ... its an adventure

Re-calculated performance metric ...

More accurate quantitative potential Altitude change predictions"

MAE 5930, Rocket Systems Design

Medicales Carospers Engineering

RS 103: Rocket Equation Revisited

$$\begin{split} Sub &- in \ Rocket \ Equation \\ \Delta h_{potential} = \left(V_1 + \frac{\Delta V}{2}\right) \cdot \frac{\Delta V}{g} = \left(V_1 + \frac{g_0 \cdot I_{sp} \cdot \ln\left(1 + P_{mf}\right)}{2}\right) \cdot \frac{g_0 \cdot I_{sp} \cdot \ln\left(1 + P_{mf}\right)}{g} \\ assume \ \frac{g_0}{g} \approx 1 \\ \Delta h_{potential} = \frac{g_0 \cdot I_{sp}^2}{2} \cdot \left[\ln\left(1 + P_{mf}\right)\right]^2 \left[1 + \frac{2 \cdot V_1}{g_0 \cdot I_{sp} \cdot \ln\left(1 + P_{mf}\right)}\right] \end{split}$$

How do we estimate specific impulse for the cold-gas thruster? ... Fundamentals!

MAE 5930, Rocket Systems Design

UtahState

UNIVERSITY Compare CO₂ and HPA as Working Propellant

From section 6.1 notes

UtahState

Fluid	Molecular Weight	Gamma	T_{θ}, K	A/A*	I _{sp} , sec
CO ₂	44.0	1.3	288	15	52.92 sec
HPA	28.964	1.4	288	15	63.12 sec

Medicinited & Ferospece Engineering

Tank Capacities, Weights

$$CO_2 \qquad M_{CO_2} = \frac{20_{OZ}}{16_{\frac{OZ}{LBM}}} \times \frac{1_{kg}}{2.204_{lbm}} = 0.567_{kg}$$

Part No.	Service Pressure	Diameter	Length	Estimated Weight	CO ₂ Capacity	Air Capacity	H ₂ O Capacity	O-Ring Seat Dia.	Threads
	(psi / bar)	(in / mm)	(in / mm)	(lbs / kgs)	(lbs / kgs)	(cu ft / liters)	(cu in / cc)	(in / mm)	
20 oz.	1800 / 123	3.20 / 81	9.38 / 238	1.5 / .68	1.25 / .57	3.7 / 103	51 / 836	.750 / 19.0	5/8-18UNF-2B

HPA

UtahState

UNIVERSITY

Medicinies & Ferosocies Engineering

UtahState UNIVERSITY

Mass fraction summary

Sample calculation (All masses in kg)

Propellant	M _{propellant}	M _{tank}	M _{clean}	M _{motorcase}	M _{dry}	Pmf		
CO ₂ (20 Oz tank)	0.567	0.68	9.25	1 kg	10.93	0.0519		
HPA ₍₄₅₀₀ psig, 90 cu. In tank)	0.555	1.36	9.25	1.kg	11.61	0.0478		
CO ₂ (24 Oz tank)	0.68	0.90	9.25	1 kg	11.15	0.0610		
$ (\Delta V)_{CO_2} = g_0 \cdot I_{sp} \cdot \ln \left(1 + \frac{M_{propellant}}{M_{dry}} \right) = 9.8067 \cdot 52.92 \left(\ln \left(1 + 0.0519 \right) \right) = 26.26 \text{ m/sec} $								
$(\Delta V)_{CO_2} = 9.8067 \cdot 52.92 (\ln (1 + 0.061)) = 30.73 \text{ m/sec}$ 24 oz								

 $(\Delta V)_{HPA} = 9.8067.63.12 (\ln (1 + 0.0478)) = 28.90 \text{ m/sec}$ 90 cu. In. MAE 5930, Rocket Systems Design MAERA

Medicinites & Flarospece Engineering

Calculate Available Augmentation Lift

UtahState UNIVERSIT

Medicinies & Ferospece Engineering

UtahState UNIVERSITY

Calculate Available Augmentation Lift (2) Potential Altitude Change

MAE 5930, Rocket Systems Design

Medicinilezi & Flarospece Engineering

Medicinies & Ferospece Engineering

"Target Altitude" Schedule

Medicinies & Ferospece Engineering

