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Rocket Science 102: 
How High will My Rocket Go? 

Newton's Laws as	


Applied to 	



"Rocket Science"	


... its not just a job ... its an 

adventure	



Sellers:	
  Chapter	
  14	
  

1	
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RS 101: Summary 

2	
  

• Rocket Thrust Equation 

• Specific Impulse  ..                Total                  ….  Instantaneous) 

• Rocket Equation 
• Propellant Mass Budget Equation 

Burn	
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Summary (2) 

• Propellant Mass Budget Equation 

Lmf !
Mpropellant

Minitial
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Mpropellant

M final + Minitial
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• Load  Mass Fraction  
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Summary (4) 
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g(t) ! sin"dt
0

tburn

#

Path	
  dependent	
  velocity	
  losses	
  

Available	
  Δ V	
  	
  

! =
M

CD " Aref
# "Ballistic Coefficient"
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       for a Vertically Accelerating Vehicle (7)  

Summary (5) 

5	
  

!V
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ΔV for a Vertically Accelerating Vehicle … 

• Calculate burnout altitude 

6	
  

• After a lot of arithmetic! 

!V
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ΔV for a Vertically Accelerating Vehicle (6)  

• Collecting terms and simplifying 

7	
  



MAE 5930, Rocket Systems Design 

ΔV for a Vertically Accelerating Vehicle (7)  

• Summary 

8	
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How High will my Rocket go?  
In	
  the	
  absence	
  of	
  dissipa3ve	
  (fric3on,	
  etc)	
  forces	
  …	
  total	
  mechanical	
  energy	
  of	
  rocket	
  
remains	
  constant	
  following	
  motor	
  burnout	
  

9	
  

“Motor	
  Burnout”	
  

“Apogee	
  Point”	
  

At	
  Motor	
  Burnout	
  …	
  	
  

At	
  Apogee	
  Point…	
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How High will my Rocket go? (2)  

Solving	
  for	
  hapogee	
  

10	
  

M final ⋅ g0 ⋅hapogee
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Example Calculation 
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“Dry” vehicle mass : 11.2451 kg, Propellant mass: 1.7623 kg 
Propellant Isp: 181.49sec, Mean Motor Thrust: 774.475 Newtons 

2009 USLI Rocket 

9.8067 181.49 1.7623! !
774.475

=4.04993 sec 

AMW L777 Motor 
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Example Calculation (2) 
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=	
  431.5	
  meters	
  

=	
  219.	
  5	
  m/sec	
  

=4.04993 sec =0.156717 

9.8067 4.04933 181.49 1 1 0.156717+( )ln
0.156717

!" #
$ % 4.04993

2
!" #

$ %&

9.8067 181.49 1 0.156717+( )ln( )! 9.8067 4.004993!"
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Example Calculation (3) 
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Calculate	
  	
  Apogee	
  Al3tude	
  (above	
  ground	
  level)	
  	
  

=	
  2888	
  meters	
  
219.52

2 9.8067!
431.5+
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Compare to Simulation Results 
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We	
  will	
  build	
  this	
  	
  
simula3on	
  later	
  

BeQer	
  than	
  0.056%	
  

=>	
  2888	
  meters	
  

=	
  219.	
  5	
  m/sec	
  

Analy=cal	
  Solu=on	
  
hapogee = 2888.71 m
Vburnout = 219.34 m / sec

Ignoring	
  drag	
  for	
  now!	
  



MAE 5930, Rocket Systems Design 

Compare to Simulation Results (2) 

15	
  

hapogee = 2888.71 m
Vburnout = 219.34 m / sec Ignoring	
  drag	
  for	
  now!	
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Compare to Fight Data 
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Why the difference?  
Primarily …. Drag! 

~	
  15%	
  error	
  in	
  peak	
  al3tude	
  
hapogee = 2888.71 m
Vburnout = 219.34 m / sec
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Compare to Fight Data (2) 

17	
  

Why the difference? Drag! 

~	
  7.2	
  %	
  error	
  in	
  delivered	
  apogee	
  Δ	
  V	
  

=	
  7.22%	
  

2888.71 2 9.8067! !( ) 0.5 2500 2 9.8067! !( ) 0.5"

2888.71 2 9.8067! !( ) 0.5 2500 2 9.8067! !( ) 0.5+
2
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How Drag Losses Effect Peak Altitude 

18	
  

Check units! 
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How Drag Losses Effect Peak Altitude (2) 
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Correct peak altitude estimate 

Path	
  Independent	
   Path	
  Dependent	
  

“Rule	
  of	
  thumb”	
  	
  ~	
  drag	
  loss	
  is	
  about	
  5-­‐10%	
  of	
  delivered	
  Δ V	
  from	
  motor	
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Drag Losses (3) 
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Ft/sec	
   Depending	
  	
  
On	
  thrust	
  to-­‐weight	
  
Off	
  of	
  the	
  pad	
  
drag	
  losses	
  	
  
can	
  be	
  significant	
  
During	
  motor	
  burn	
  

As	
  much	
  as	
  12-­‐15%	
  of	
  
Poten=al	
  al=tude	
  

…	
  path	
  dependent!	
  

Must	
  simulate	
  trajectory	
  



MAE 5930, Rocket Systems Design 

Drag Coefficient is Configuration Dependent 

21	
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Drag Coefficient is Configuration Dependent (2) 

22	
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Drag Coefficient is Configuration Dependent (3) 

23	
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A Recipe for Energy Management 

24	
  

Conservation of  Energy :
Potential + Kinetic Energy = Constant ! Dissipated  Energy

g "hapogee +
V 2

apogee

2
= hburnout +

V 2
burnout

2
!

# "V 3

$
dt

tburnout

tapogee

%

& hapogee = hburnout +
V 2

burnout

2 " g
!
V 2

apogee

2 " g
'

()
*

+,
!

1
g

# "V 3

$
dt

tburnout

tapogee

%

• Velocity and drag are 
Very high just after 
motor burnout .. But 
diminish near apogee 

• Specific Energy of 
Rocket becomes “more 
constant” with time 
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A Recipe for Energy Management (2) 

25	
  

• Specific Energy of Rocket becomes “more constant” with time (and altitude) 

• At motor burn out Drag Energy Dissipation rate is ~3.5 times higher than at 1000 m AGL 

• At 1500 m AGL Drag Energy Dissipation is essentially zero ..  
                                Estimated energy level~ constant    
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A Recipe for Energy Management (3) 

26	
  

• Potential Altitude as an Estimator of  “Achievable Altitude” Becomes Increasingly 
More accurate as Apogee is Approached  

• Use Augmentation Thrust to “Manage Energy” at waypoints of Increasing Altitude 
Along Probably trajectory 

Thrust  
Augmentation  
Active 
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A Recipe for Energy Management (4) 

27	
  

Thrust  
Augmentation  
Active 

Drag decay 
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A Recipe for Energy Management (4) 

28	
  

• First (mostly constant) Augmentation Impulse Boosts Energy to “achievable level” 
Once we have calculated energy state (using IMU) … 1706.8 m = 5600 ft  

• Second Augmentation Impulse Boosts Maintains Energy level at Desired (Target Level) 
Eneregy Level using Pulsed-modulation … 1609.32 m = 5280 ft 
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A Recipe for Energy Management (5) 

29	
  

• Lower Augmentation Thrust 
levels allow for more precise 
modulation, but are less 
efficient and must “burn 
longer”    
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A Recipe for Energy Management (6) 

30	
  

• Early Energy Management is More Effective, But less Precise   

Thrust  
Augmentation  
Active 
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A Recipe for Energy Management (7) 

31	
  

• Single Waypoint Energy Management Near Apogee 

• Insufficient Propellant to hit target 
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A Recipe for Energy Management (8) 

32	
  

• Earlier Implementation of First Waypoint 

• Insufficient Accuracy to Hit target 
• There will definitely be a Design 
“Sweet spot” .. here 
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity 

33	
  

Apogee	
  

• Any Launch Angle not 
“Completely Vertical” 
Results in  some horizontal  
Component of Horizontal 
 velocity at Apogee 

• However as apogee is  
Approached Horizontal 
Velocity Component becomes 
~ constant 
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (2) 

34	
  

Apogee	
  

• Compared to total velocity of Vehicle 
Horizontal component ~ constant 
Very soon after motor burn out 

• Vhorwaypoint
 ~ V

apogee
  

• 85 Deg Launch Angle 

 

Vhor waypoint = Vwaypoint ! cos "( ) #Vapogee

$
" = flight  path angle

= tan%1
!h

Vhor
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hapogee = hwaypoint +
V 2

waypoint

2 ! g
"
V 2

apogee

2 ! g
#

$%
&

'(
"
1
g

) !V 3

*
dt

twaypoint

tapogee

+ =

= hwaypoint +
V 2

waypoint

2 ! g
#

$%
&

'( vertical
+

V 2
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2 ! g
#

$%
&

'( horizontal
"
V 2

apogee

2 ! g

#

$
%

&

'
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1
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twaypoint

tapogee

+

,
V 2

waypoint

2 ! g
#

$%
&

'( horizontal
-
V 2

apogee

2 ! g

, hapogee = hwaypoint +
V 2

waypoint

2 ! g
"
V 2

apogee

2 ! g
#

$%
&

'(
"
1
g

) !V 3

*
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twaypo int

tapogee

+ =

, hapogee = hwaypoint +
V 2

waypoint

2 ! g
#

$%
&

'( vertical
"
1
g

) !V 3

*
dt

twaypo int

tapogee

+

Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (3) 

35	
  

“0” Near 
Apogee 
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (4) 

36	
  

 

! hapogee = hwaypoint +
V 2

waypoint

2 " g
#

$%
&

'( vertical
)
1
g

* "V 3

+
dt

twaypo int

tapogee

,

!
!
hpotential = hwaypoint +

V 2
waypoint " sin

2 -( )
2 " g

 

continuously estimate ...

!
hpotential( )

t
= h(t ) +

V 2
(t ) ! sin

2 " (t )( )
2 ! g(t )

at waypoint...we have a very simple control strategy....

...if (hmin ! h ! hmax ) && h < 
!
hpotential( )#$ %&

         "thrust on"
... else
         "thrust off"

• Non-optimal strategy 
.. But it works pretty well 

• Some potential that  
non-linear “bang-bang” or 
Dead-band controller may  
Be more propellant efficient 

• But                     is a critical 
feedback parameter                   

 
!
hpotential
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Accounting for Drag Losses In Potential 
Altitude 

37	
  

Ignoring drag …. At any point along the trajectory …   

hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g
since→Vhor = V (t) ⋅ cos γ( ) ≈ constant

But because of drag …. The true apogee will be…   

hapogee = hpotential −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

Drag Loss 
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Accounting for Drag Losses  
In Potential Altitude 2 
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

 Pre-­‐schedule	
  target	
  
Al=tude	
  …	
  	
  

htarget = 1609.32m + Δhdrag
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Accounting for Drag Losses  
In Potential Altitude 3 

39	
  

Energy Management Control Algorithm. 

Algorithm  
Active once  
Acceleration 
Drops below 
1-g 
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Accounting for Drag Losses  
In Potential Altitude 4 
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

 Pre-­‐schedule	
  target	
  
Al=tude	
  …	
  	
  

htarget = 1609.32m + Δhdrag

Energy	
  Low	
  Launch	
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Accounting for Drag Losses  
In Potential Altitude 5 
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

 Pre-­‐schedule	
  target	
  
Al=tude	
  …	
  	
  

htarget = 1609.32m + Δhdrag

Energy	
  Low	
  Launch	
  
With	
  augmenta;on	
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Accounting for Drag Losses  
In Potential Altitude 6 
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Augmenta=on	
  
thrust	
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Questions?? 


