1.8 Method of Characteristics for Axisymmetric Irrotational Flow

the graphical construction of Fig. 11.14h, and by the fact that only seven increments are
chosen for the corner expansion fan. For a more accurate calculation, finer increments should
be used, resulting in a more closely spaced characteristic net throughout the nozzle.
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Note that a small inconsistency is involved with the properties at point 1 in
Fig. 11.14, as listed in the first line of Table 11.1. The entry in Table 11.1 for @ at
point 1 is a nonzero (but small) number, namely (0.375°. This is inconsistent with the
physical picture in Fig. 11.14, which shows point 1 on the nozzle centerline where
¢ = 0. This inconsistency is due to the necessity of starting the calculations with the
straight characteristic line, a—1, along which the value of & is constant and equal to
0.375° In reality, the characteristic a—1 is curved because of the nonuniform flow
inside the region a—b-1 in Fig. 11.14, but we have no way of knowing what that
nonuniform flow is for this problem. In Sec. 12.7, we will show that a finite-difference
calculation in the throat region can provide such information. However, within the
framework of the method of characteristics in the present section, we must live with
this inconsistency. As long as the first characteristic line a1 is taken as close as pos-
sible to the assumed straight sonic line, this inconsistency will be minimized.

11.8 | METHOD OF CHARACTERISTICS FOR
AXISYMMETRIC IRROTATIONAL FLOW

For axisymmetric irrotational flow, the philosophy of the method of characteristics
is the same as discussed earlier: however, some of the details are different, princi-
pally the compatibility equations. The purpose of this section is to illustrate those
differences.

Consider a cylindrical coordinate system, as sketched in Fig, 11.15. The cylin-
drical coordinates are r, ¢, and x, with corresponding velocity components v, w,

w

z

Figure 11.15 | Superposition of rectangular and cylindrical
coordinate systems for axisymmetric flow.
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and u, respectively. In these cylindrical coordinates, the continuity equation
Ve (pV) =0

becomes

d(pu) I(pv) l a(pw) py o
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Recalling from Sec. 10.1 that axisymmetric flow implies a/op = 0, Eq. (11.34)
becomes
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From Euler’s equation for irrotational flow, Eq. (8.7),
— B L PR B )
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However, the speed of sound a® = (dp/dp), = dp/dp. Hence, along with w = 0 for
axisymmetric flow, Eq. (11.36) becomes

dp = ~Leudu + v av) (11.37)
a
from which follows
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Substituting Eqgs. (11.38) and (11.39) into Eq. (11.35), we obtain, after factoring,

(1_£)a“ s wa”+(1—ﬁz>@:—f—‘ (11.40)
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The condition of irrotationality is
VxV=0

which in cylindrical coordinates can be written as
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For axisymmetric flow, Eq. (11.41) yields

ad
I e (11.42)
dar  ox
Substituting Eq. (11.42) into (11.40), we have
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Keeping in mind that u = u(x, ) and v = v(x, r), we can also write
aut du du av
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Equations (11.43), (11.44), and (11.45) are three equations which can be solved for
the three derivatives du/dx, dv/dx, and dv/or.

The reader should by now suspect that we are on the same track as in our
previous development of the characteristic equations. Equations (11.43) through
(11.45) for axisymmetric flow are analogous to Egs. (11.5) through (11.7) for two-
dimensional flow. To determine the characteristic lines and compatibility equations,
solve Eqs. (11.43) through (11.45) for dv/adx as follows:

u? v Vv
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d 0 dv d N
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The characteristic directions are found by setting D = 0. This yields
(dr) —uv/a2 + VG2 + vz)/az] -1
dx char a 1- (uz/az)

Equation (11.47) is identical to Eq. (11.10). The discussion following Eq. (11.10),
leading to Eq. (11.14), also holds here. Consequently,

(11.47)

(ﬁ) = tan(f F p) (11.48)
dx char

and we see that for axisymmetric irrotational flow, the characteristic lines are Mach
lines. The C, and C_ characteristics are the same as those sketched in Fig. 11.6.
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The compatibility equations that hold along these characteristic lines are found
by setting N = 0 in Eq. (11.46). The result is

(1 sz) vdx
dv \ a? r du
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In Eq. (11.49), the term dr/dx is the characteristic direction given by Eq. (11.47).
Hence, substituting Eq. (11.47) into (11.49), we have

or

uv w4+ v dr
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Note that Eq. (11.50) for axisymmetric flow differs from Eq. (11.16) for two-
dimensional flow by the additional term involving dr/r. Referring again to Fig. 11.6,
we make the substitution u = V cos# and v = V sin@ into Eq. (11.50), which after
algebraic manipulation becomes

~. dVv ] dr
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(11.51)

The first term on the right-hand side of Eq. (11.51) is the differential of the Prandtl—
Meyer function, dv (see Sec. 4.14). Hence, the final form of the compatibility
equation is

]' Ir
o (along a C_ characteristic) (11.52)
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Equations (11.52) and (11.53) are the compatibility equations for axisymmetric
irrotational flow. Compare them with the analogous results for two-dimensional
irrotational flow given by Egs. (11.20) and (11.2 1). For axisymmetric flow, we note the




1.9 Method of Characteristics for Rotational (Nonisentropic and Nonadiabatic) Flow

following:

1. The compatibility equations are differential equations, not algebraic equations
as before.

2. The quantity @ + v is no longer constant along a C_ characteristic. Instead, its
value depends on the spatial location in the flowfield as dictated by the dr/r
term in Eq. (11.52). The same qualification is made for # — v along a C,
characteristic.

For the actual numerical computation of an axisymmetric flowfield by the
method of characteristics, the differentials in Egs. (11.52) and (11.53) are replaced
by finite differences (which are to be discussed later). The flow properties and their
location are found by a step-by-step solution of Eqgs. (11.52) and (11.53) coupled
with the construction of the characteristics net using Eq. (11.48).

11.9 | METHOD OF CHARACTERISTICS
FOR ROTATIONAL (NONISENTROPIC
AND NONADIABATIC) FLOW

The assumption of irrotationality in the previous sections allows a great simplifica-
tion. For example, Eq. (11.5) for two-dimensional irrotational flow contains only
three velocity derivatives, namely, @, = du /0x, @, = dv/dy, and @, = du/dy =
dv/ox. The irrotationality condition allows the use of the velocity potential and, in
particular, eliminates one of the possible velocity derivatives as an unknown via
du/dy = dv/dx. Along with Eqs. (11.6) and (11.7), we have a system of equations
with three unknown velocity derivatives, which can be solved by means of three-
by-three determinants, Eq. (11.8). Similarly, for axisymmetric irrotational flow, the
irrotationality condition, Eq. (11.42), allows the derivation of a governing equation,
Eq. (11.43), which contains only three unknown velocity derivatives. This again
leads to a system of three-by-three determinants, namely, Eq. (11.46).

In contrast, rotational flow is more complex, although the philosophy of the
method of characteristics remains the same. Only a brief outline of the rotational
method of characteristics will be given here; the reader is referred to Shapiro
(Ref. 16) for additional details.

Crocco’s theorem, Eq. (6.60), repeated here, -

TVs=Vh, - Vx(VxV)

tells us that rotational flow occurs when nonisentropic and/or nonadiabatic condi-
tions are present. An example of the former is the flow behind a curved shock wave
(see Fig. 4.29), where the entropy increase across the shock is different for different
streamlines. An example of the latter is a shock layer within which the static tempera-
ture is high enough for the gas to lose a substantial amount of energy due to thermal
radiation.

Without the simplification afforded by the irrotationality condition, it is not pos-
sible to obtain a system of three independent equations with three unknown derivatives
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