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SUMMARY

Nozzle performance data were obtained with three "method-of-

characteristics" nozzles and a iS ° conical nozzle at pressure ratios up

to 150. Each basic configuration was cut off and tested at expansion

ratios of 25, 20, 15, and i0. Unheated dry air was used at nozzle inlet

pressures up to 22,000 pounds per square foot absolute. Nozzle thrust

data were extrapolated to infinite pressure ratio (zero discharge

pressure).

As much as 1-percent increase in thrust_ with no increase in nozzle

surface area (weight), can be obtained by using a method-of-characteristics _

nozzle instead of a 15 ° conical nozzle when operating with a nozzle ex-

pansion ratio of 25 and nozzle pressure ratios from 200 to _. Con-

versely, for the s_ne thrust, reductions in nozzle divergent surface

area in the order of 25 percent are possible. The thrust performance of

the method-of-characteristics nozzle was not as good as that of the iS °

conical nozzle when operating at pressure ratios considerably below de-

sign (below i00 for the expansion ratio 25 nozzles). Theoretical and

measured nozzle momentum coefficients agreed within about 0.6 percent.

This is the order of accuracy of both the measured and theoretical values.

INTRODUCTION

Because of the high ratio of missile gross weight to payload weight

required for space missions, the efficiency and weight of the propulsion

system can have a large effect on payload. If, for example, the payload

weight is i percent of the gross weight, a 1-percent increase in exhaust-

nozzle efficiency would allow the payload to be almost doubled. Con-

versely, if the nozzle were reduced in length with no reduction of ef-

ficiency 5 the savings in nozzle weight could be applied directly to the

payload.



Analytic studies have indicated (refs. i and 2) that, with nozzle
expansion ratios of about 25_ increases in design-point efficiency on
the order of i percent maybe obtained by using an isentropic contoured
nozzle in place of a IS° conical nozzle of the samelength_ or for the
samedesign-point efficiency_ the contoured nozzle can be about 20 per-
cent shorter than the conical nozzle. In order to demonstrate experi-
mentally the thrust-weight gains possible with isentropic contoured noz-
zles (as comparedwith a 15° nozzle)_ the experimental investigation re-
ported herein was undertaken. It was also desired to determine the per-
formance of this type nozzle whenoperating below design pressure ratio.
Air, rather than rocket gases_ was used as the test fluid in order to
allow more precise measurementsand to eliminate uncertainties due to
gas-state changes.

Coordinates for the three basic nozzles investigated were calculated
by the method of characteristics and were obtained from reference 3.
These nozzle contours were designed to give uniform parallel exit flow
at Machnumbersof 5.018_ 5.819, and 6.851; however, only the portions
up to an expansion ratio of 28 were constructed. (In spite of this_ the
basic nozzle configurations shall hereinafter be referred to by the nomi-
nal design Machnumbersof 5.02, 5.82, and 6.85.) For comparison_ a 15°
conical nozzle was also investigated. All the basic nozzles were con-
structed in sections so that they could be run at nominal expansion
ratios ranging from I0 to 25.

The investigation was conducted in an NASALewis Research Center
altitude facility with unheated dry air (less than i grain of water per
pound of air) over a range of pressure ratios from about i0 to 130.
Data were obtained with nominal inlet total pressures of 12,000 and
22,000 pounds per square foot.
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APPARATUS

Nozzle Configurations

Figure i is a photograph of a typical nozzle installed in the test

facility. The wooden nozzles were built in sections giving nominal area

ratios of I0, 15_ 20_ and 25. After rough machining, the sections were

bolted together for finishing.

Initial nozzle coordinates (not corrected for boundary-layer dis-

placement) were obtained from reference 2. The nozzles of reference 2

were designed with zero wall radius of curvature at the throats. In

order to comply more closely with current rocket nozzle practice_ the
8/10 streamlines of these nozzles were used_ resulting in a wall radius

of curvature of approximately 8/10 of the nozzle throat diameter. The

final nozzle coordinates (fig. 2) include corrections for boundary-layer

displacement thickness (fig. 3), which were computed by the methods



given in reference _. Figure 4 is a sketch of the IS° conical nozzle.
The subsonic portions of the method-of-characteristics nozzles were the
sameas those of the IS° nozzle. All nozzles had a nominal throat diam-

eter of _ inches. As an indication of relative nozzle weights_ the
variation of nozzle surface area ratio S/Acr with nozzle expansion
ratio A/Acr is presented in figure S.
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Lo
I

Installation and Instrumentation

Figure 6 is a sketch of the nozzle test installation showing thrust-

measurement linkage and location of instrumentation. Location of the

nozzle static-pressure instrumentation is shown in figure 4. In terms

of nozzle area rat io_ the location of nozzle static-pressure instrumenta-

tion was the same for all nozzles.

o
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PROCEDURE

Each nozzle was first tested with maximum expansion ratio (25). The

last section of the nozzle was then removed and data were obtained with

an expansion ratio of 20. This procedure was followed umtil data had

been obtained at expansion ratios of ZS_ ZO_ 15, and i0. Each configura-

tion was investigated over a range of pressure ratios from about i0 to

160 with a nominal inlet pressure of 22_000 pounds per square foot. With

most of the configurations, data were also obtained with an inlet pres-

sure of IS_000 pounds per square foot to determine possible effects of

Reynolds number. Symbols used in the report are listed in appendix A.

RESULTS AND DISCUSSION

Nozzle Flow Coefficients

Essentially all of the flow-coefficient values obtained were well

within ±0.5 percent of 0.99S (fig. 7). No effect of pressure level is

apparent within the data scatter.

Comparison of Measured and Theoretical Nozzle Performance

Nozzle total momentum. - When a nozzle is flowing full, the total

momentum at the nozzle exit is independent of the ambient pressure, and

the net thrust coefficient can be written in the form

Fn = Pa Ae i (i)
CF = _AcrPN CM - PN Acr
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where CM is the exit total momentumcoefficient (or thrust coefficient
of the nozzle discharging into a vacuum) and (pa/PN)(Ae/Acr)(i/q0) corrects
for the pressure into which the nozzle is discharging.

Because it is independent of pressure ratio (as long as the nozzle
is flowing full), CM is an excellent parameter for comparison of nozzles.
Values of CM were calculated for each nozzle expansion ratio using
equation (i) and measuredvalues of CF obtained only whenthe nozzles
were flowing full. A typical plot of CM against nozzle pressure ratio
is presented in figure 8. For each configuration, the values of CM
were constant within a scatter of about ±0.5 percent.

A cross plot showing the variation of CM with nozzle expansion
ratio for all the nozzle designs is presented in figure 9. The data
points on this figure represent the average measuredvalues obtained from
plots such as figure 8. Also included in figure 9 are theoretical curves
of CM for the method-of-characteristics nozzles, which were computed
from the theoretical nozzle pressure distributions. These theoretical
curves also include corrections for boundary-layer effects. (The calcu-
lation methods are discussed in appendix B.) For the 5.82 and 6.85 Mach
numbernozzles, the experimental values and the theoretical curves agree
well within the scatter of the experimental data. The theoretical curve
for the 5.02 Machnumbernozzle is about 0.0! (0.6 percent) higher than
the average experimental values. Reasons for the larger discrepancy in
the latter case have not been resolved. Consideration of calibration
and measurementaccuracies indicated that the faired experimental values
are accurate to within _.5 percent. Possible contributing causes are
(i) underestimation of boundary-layer losses and (2) interpolation errors
in the theoretical pressure distribution. (Flow conditions were calcu-
lated at only a few axial stations in ref. 2, so that extensive interpo-
lation was required.)

The increase in thrust with decreasing nozzle design Machnumber
that is indicated in figure 9 occurs because_ for a given expansion ratio,
the lower the nozzle design Machnumber, the closer the exit flow is to
being uniform and axial. (The 5.02 nozzle is truncated to a lesser extent
than the 5.82 or the 6.85 nozzle.) The additional thrust is therefore
obtained with the Denalty of additional length and weight.

Values of CM were also computedfrom the measurednozzle pressure
distributions (see appendix B). The values obtained were from 0.i to
0.4 percent higher than the values computedfrom theoretical pressure
distributions. In view of the difficulty of obtaining accurate integra-
tions of steep nozzle pressure gradients, this agreement is considered
excellent.

Nozzle _ressure distributions. A comparison of theoretical and

measured nozzle static-pressure distributions is presented in figure i0.

!
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Each of the data points on figure I0 represents an average of many meas-

urements that generally scattered no more than ±3 percent. With all

three of the contoured nozzles, all the average measured pressure ratios

were essentially within 0.001 of the theoretical curves. For expansion

ratios greater than about 15 (fig. lO(c)), the measured pressure ratios

were generally slightly higher than the theoretical curves. This prob-

ably indicates that the corrections made for boundary-layer displacement

were too small. At an expansion ratio of 24.5, the measured values of

wall pressure were approximately i0 percent higher than the theoretical

values; however_ the absolute pressure level is so low that the effect

on thrust coefficient is extremely small.

The generally good agreement between theoretical and experimental

values of total momentum coefficients and of nozzle pressure distribu-

tion indicates that, if gas properties are adequately known and if

boundary-layer effects are considered_ the performance of a method-of-

characteristics nozzle can be computed to about the same order of accu-

racy as it can be measured.

Variation of Thrust with Pressure Ratio

Figure ii shows the variation o£ nozzle thrust ratio with nozzle

pressure ratio for each configuration Values of CF/CF, id were ex-
tended to pressure ratios up to i000 by use of equation (i) and the CM

values of figure 9. The vertical line crossing each experimental curve

indicates the pressure ratio below which the nozzle flow separates. To

avoid confusion_ theoretical curves are not shown on figure ii. However_

as long as the nozzle is flowing full, the percentage agreement would be

about the same as that shown for the momentum coefficient in figure 9.

Comparison of the curves in figure ii shows that the thrust of the

contoured nozzles was not as high as that of the 15 ° nozzle of the same

expansion ratio when operating at pressure ratios considerably below de-

sign (below i00 for the expansion ratio 25 configuration). This, of

course_ means that the overexpansion losses are greater in the contoured

nozzles. This difference in overexpansion losses is attributed primarily

to differences in the nozzle pressure-area relations that exist in the

_nseparated-flow portion of the nozzles. Examination of figure i0 shows

that, in the downstream portions of the nozzles (A/Acr > 4.5), the wall

static-pressure ratio pw/PN is lower in the conical than in the con-

toured nozzles at any given expansion ratio. Also_ it has been shown

(e.g._ refs. 5 and 6) that the wall static-pressure ratio at which the

flow separates ps/PN is dependent primarily upon the nozzle pressure

ratio PN/Pa and is relatively insensitive to configuration. Therefore_

with a given nozzle pressure ratio_ the flow will separate at a lower

expansion ratio in the conical nozzle than in the method-of-characteristics

nozzles_ resulting in lower overexpansion losses in the conical nozzle.



This is illustrated in the following simplified sketch:
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The shaded areas above each curve represent the thrust losses due to

overexpansion. For a given ambient pressure ratio_ separation occurs

at a lower expansion ratio in the conical nozzle_ with the result that

A2 is less than AI.

It will be shown later that, with the method-of-characteristics

nozzles_ there are secondary effects of configuration on the relation

between ps/PN and PN/Pa that are in the direction of causing still

more overexpansion (and thus, thrust loss) in the contoured nozzles.

Although these thrust losses are undesirable_ this greater tendency of

the contoured nozzles to overexpand may be an advantage in cases where

separation is undesirable for structural or control reasons_ and the

engine must operate at reduced pressure ratio for only a relatively sho_

time.

It can also be seen in figure ii that the peaks in the CF/CF_id

curves do not necessarily occur at the design-point pressure ratios

(solid symbols). This is a result of the definitions of design pressure

ratio and of CF/CF_id. In this paper_ the design point is taken as the
condition for which the measured wall static pressure at the nozzle exit

is equal to the ambient pressure (pe/PN = PJPN)" Thrust ratio is given

by Pa Ae i

CF CM PN Acr

CF,i----_ = mVid (2)

PNAcr
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where, with fixed configuration and inlet conditions, CM, @, Ae/Acr , and

m/PNAcr are all constant.

The pressure ratio at which the maximum value of CF/CF,_d

obtained may be found by differentiating the equation for CF/C F

respect to pressure ratio and setting the result equal to zero.

operation results in the following relation:

will be

_is with

Pa Ae i(i + YM_d) = 0 when CF/CF, id = maximum
CM PN Acr q_

(3)

Ideal total momentum coefficient is given by

(pA+ mV)id: Pa{A
CM, id = pNq_Acr PN _Acr] id

2
i (1 + y Mid ) (4)

Combining these equations results in

CM Ae/Acr
- when CF/CF, id : maximum (S)

CM,id (A/Icr)id

For an imperfect nozzle, CM < CM, id , and therefore Ae/Acr < (A/Acr)i d-

Furthermore, the values of pe/PN, for all configurations tested, were
higher than the one-dimensional values for the nozzle expansion ratios.

It can therefore be concluded that the nozzle pressure ratio PN/Pa at

which the CF/CF, id curves peak will be higher than the "design" pres-

sure ratio PN/Pe.

A cross plot of design values of CF/CF_id against design pressure

ratio is presented in figure 12. For the 15 o conical nozzle, CF/CF,id
is essentially constant at 0_98; whereas, for the contoured nozzles,

CF/CF,id varies from 0.99 (M = 5.02, Ae/Acr = 25 nozzle) to O.95

(M = 6.85, Ae/Acr = i0 nozzle). The variations obtained with the con-

toured nozzle occur because the exit flow is less uniform and less axial

as the nozzle lengths are reduced from the full design length. On the

other hand, essentially radial flow is established a short distance down-

stream of the throat in the conical nozzle, so that reducing nozzle

length has little effect on the flow distribution or angularity.
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Nozzle Flow Separation

Pressure distributions. - Typical nozzle pressure-distribution

curves (with flow separation) are presented in figure 13; figure 13(a)

shows data obtained with the 5.82 nozzle and figure 13(b) shows data for

the 5.02 nozzle. Data obtained with the 15 ° conical nozzle and the 6.85

contoured nozzle gave essentially the same shaped curves and slopes as

illustrated in figure 13(a). With the 5.02 nozzle (fig. 13(b)), some

difference was observed: With an expansion ratio of 25, and to a lesser

extent with 20, additional pressure rise occurred downstream of the pres-

sure rise at separation (e.g._ the curves obtained with nozzle pressure

ratios of 0.0288, 0.0425, 0.0555, and 0.0864, in fig. 13(b)). This pos-

sibly indicates flow reattachment in the downstream portion of the nozzle

resulting from the low divergence angles (3° to 6° ) in this region.

Separation pressure-rise ratio. - Figure 14 shows the variation of
the static-pressure-rise ratio at separation Pa/Ps with the separation

wall static-pressure ratio ps/p N. Values of ps/PN were obtained from

plots such as figure 13, and are the values of wall static pressure at

which separation commences. Included on figure 14 are theoretical lines

of pressure-rise ratio for oblique shock waves having constant _ch num-

ber ratio across the shock wave. Except for variations (dashed lines on

fig. 14) near the exit of each nozzle_ the data for each nozzle design

generalize independently of nozzle expansion ratio. The deviations that

occur near the exit of each nozzle are caused by feedback of the ambient

pressure through the subsonic portion of the nozzle boundary layer. Such

feedback causes the nozzle exit wall static pressure to approach (and

vary with) ambient pressure, even when the nozzle flow is not separated.

For the 15 ° conical nozzle (fig. 14(a)), the generalized curve of separa-

tion pressure-rise ratio coincides with the curve for a Mach number ratio

of 0.76 across an oblique shock wave. This agrees with the data of ref-

erence 5, which were obtained with 15 ° , 25° , and 30 ° conical nozzles, and

also with the value suggested in reference 6.

For the contoured nozzles (fig. 14(b)), the separation pressure-rise

ratio did not generalize with Mach number ratio. Since separation pres-

sure ratio is primarily a function of boundary-layer characteristics,

these data may indicate that the boundary layers in the conical and in

the contoured nozzles are significantly different. The Mach 5.02 nozzle

separation pressure-ratio plot (fig. l_(b)) shows more scatter than the

others. This may be a result of the flow reattachment that occurred in

this nozzle.

b_
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Thrust-Weight Comparison of Nozzle Configurations

Figure ik shows the variation of CF/CF_id with surface area r_tio

(weight) for nozzle pressure ratios PN/Pa of infinity, o00_ and ZOO.

In the IDressure-ratio range from 200 to _, and with surface area rmtios

greater than SO_ one or ._.ore of the method-of-characteristics nozzles

gave performance equal to or better than the IS ° conical nozzle. For

exsmple_ with a surface area ratio of b,%_ tb= lynch 1.88 nozzle woi_li _[ve

about i percent more thrust than the conical nozzle over the pres:::_re-

ratio range from _00 to _. In this case, the expansion ratio for _oth

nozzles is about 2S. If_ on the other hand, a set thrust level is de-

sired_ considerable weight saving can be obtained by usin_ a conto_re_

nozzle. For example_ at a pressure ratio of infinity the M_h _i.82 r:oz-

zle having a surface area ratio of 70 would give the s_e thrust as a i_ °

conical nozzle having a surface area ratio of _.0. At a pressure ratio

of 200_ the same Hach S.82 nozzle would have more than i perce_t <reater

thrust than the same IS ° conical nozzle. The dropoff in nozzle perf<rm-

ance at the higher surface area ratios indicated in figure iS(c) occur_s

because, with a nozzle pressure ratio of 200, the larger-area-ratio noz--

zles are operating overexpanded and therefore less efficiently.

Figure 16 is similar to figure IS, except that nozzle len_th rather

than nozzle surface area is used as the basis of comparison. _uis com-

parison also shows that savings in length can generally be obtained by

use of a contoured nozzle.

SUMMARY OF RESULTS

The results of an investigation of three method-of-characteristics

nozzles and a IS ° conical nozzle are as follows:

i. For expansion ratio of 25 and nozzle pressure ratios from 800 to

_, as r_uch as 1-percent increase in thrust, with no increase in nozzle

surface area (weight), can be obtained by using a method-of-characteristics

nozzle instead of a IS ° conical nozzle. Conversely_ for the s_me thrust,

reductions in nozzle divergent surface area in the order of 8S percent

are possible.

2. At low operating pressure ratios, flow in the method-of-

characteristics nozzles overexpanded to a greater extent than that in the

IS ° conical nozzle. Although this results in reduced thrust_ it may be

an advantage in cases where flow separation is undesirable for structural

or control reasons.
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3. Theoretical and measured nozzle momentum coefficients agreed with-

in about 0.6 percent. This is the order of accuracy of both the measured

and theoretical values.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, April i_ 1960
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CF

CF/CF, id

SYMBOLS

Any consistent _et of dimensions may be used.

A cross-sectional area

nozzle thrust coefficient_ Fn/_AcrP N

nozzle thrust ratio, F/mVid = CF/E(p/P)(A/Acr)YM_pa/PN

CM nozzle total momentum coefficient, CF + (pa/PN)(Ae/Acr)(i/_)

F thrust

M Mach number

m mass flow

PN nozzle inlet total pressure

p static pressure

Pa _nbient (nozzle discharge) pressure

Pe nozzle exit wall static pressure

Ps nozzle wall static pressure at separation

Pw local nozzle wall static pressure

r radius

S nozzle divergent surface area

V velocity

w weight flow

x axial distance from nozzle throat

ratio of specific heats_ i._

5* boundary-layer displacement thickness
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8 boundary-layer momentumthickness

nozzle throat flow coefficient_ Wl/Wcr_id

Subscripts:

bZ boundary layer

cr throat or critical (M = i) conditions

e nozzle exit station

id ideal (one-dimensional) value

n net

s separation

x arbitrary nozzle station

i airflow measuring station

I

Co
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THE0_TIC_ NOZZ_ _RUST CALCULATIONS

Nonviscous Thrust

If skin friction is neglected, total momentum coefficient at any sta-

x in the nozzle can be fo_d from

I/Ax/Acr Pw A' _lj
CM : CM, cr + -- d{ ! (Bla)

PN _cr_

where CM_cr is the total momentum coefficient at the nozzle throat_ the

integral term is the pressure-area force on the divergent portion of the

nozzlej and A' is the nozzle cross-sectional area not corrected for

boundary-layer displacement. With a method-of-characteristics nozzle,

the relation between pw/PN and A'/Acr is known, and therefore the

integral term. can be evaluated graphically.

Theoretical Thrust Corrected for Boundary-Layer Losses

The flow areas of the method-of-characteristics nozzles tested were

corrected for boundary-layer displacement_ so that the variation of

pw/PN with nozzle length is the same as for the calculated nonviscous

case. The flow-area correction is given by

_X = 2_rxS_

Theoretical variations of pw/PN with A/Acr (A/Acr corrected for

boundary-layer displacement) are shown in figure I0 for the method-of-

characteristics nozzles.

To obtain total momentum coefficient with viscous effects_ the

pressure-area force due to the boundary-layer displacement area is added;

and the loss in momentum_ due to decreased velocity of the mass flow in

the boundary layer, is subtracted from the nonviscous total momentum co-

efficient. By definition of boundary-layer momQntum thickness @_ the

loss in momentum due to mass flow in bhe boundary layer is given by

S(mV)b _ 2_re Pw

PNAcr - Acr PN YM2
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wh_re M is the Mach number corresponding to the local wall pressure

rat!o pw/PN. Total momentum coefficient is then given by

CH = CH, cr +
x/Acr d{A, __i \Aer/+

[2;r5" (pw/PN) Ix

Ae r
Acr }"-_

(Blb)

Boundary-layer displacement thicknesses 6* were calculated by the

methods of reference 4 (assigning a i/7 power profile), and are plotted

in dimensionless form in figure S. Values of 6*/@ were obtained from

the tables of reference 4, using Mach numbers corresponding to the theo-

retical values of pw/PN and assuming a i/7 power profile.

l:=J

Thrust from Measured Pressure Distribution

The equation for total momentum coefficient can be written

Ir Pw d A Skin friction fore
oH = CH,cr + _ - --

where the pressure-area integration is carried out using area ratios cor-

rected for boundary-layer displacement.

If it is assumed that skin friction and the throat momentum are the

s_le as in the theoretical calculation, the momentum coefficient can 0e

obtained from the measured pressure distribution by

_1_ Ax/Acr

CM = CM'the°r + PN_meas PN,theor/ tAcr]
(B4)

Nozzle-Throat Flow and Thrust Coefficients

For all theoretical nozzle thrust calculations_ the nozzle flow co-

efficient _ was assumed to be 0.995; this value is typical for well-

designed nozzle inlets and agrees with the measured values obtained with

the current nozzles.
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By integration of various assumed throat velocity profiles_ it can

be sho,_n that the ratio of actual to ideal throat total momentum is al-

ways larger than the throat flow coefficient. It was, therefore_ assumed
that the throat total momentum was 0.9_6 times the one-dimensional momen-

tum for M = i. Thus_

CM'cr = _ = 0.995 = 1.26_ (B4)
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Figure i. - Typical nozzle installed in test facility.
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