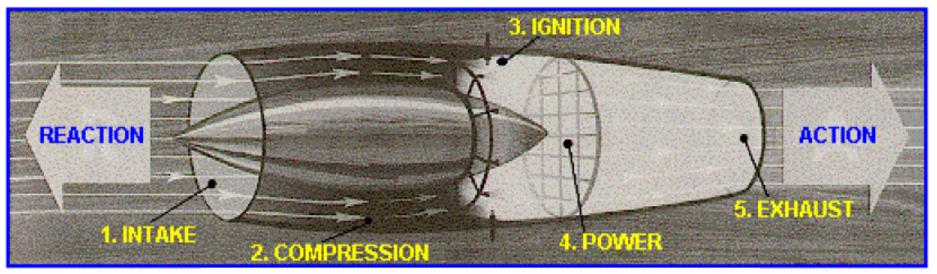
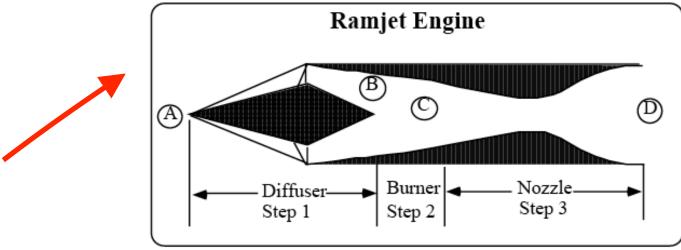


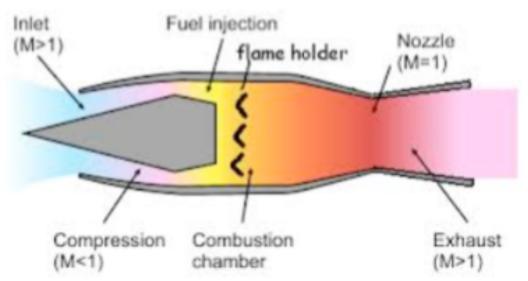
Section 4.3: The RamJet Propulsion Cycle





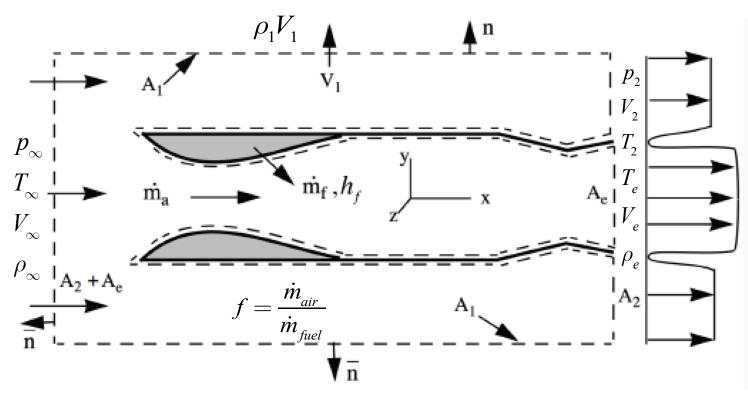
Background on RamJets

- Ramjets are a very simple jet engine configuration that are capable of high speeds
- Ramjets cannot produce thrust at zero airspeed; they cannot move an aircraft from a standstill.



- A ramjet powered vehicle, therefore, requires an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust.
- Inherently constrained to "combined cycle" applications for flight

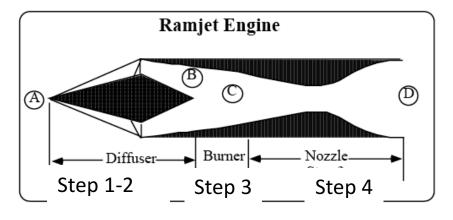
Control Volume for a Ramjet



$$F_{\mathit{thrust}} = \frac{\left(\dot{m}_{\mathit{air}} + \dot{m}_{\mathit{fuel}}\right) \cdot V_{\mathit{exit}} - \left(\dot{m}_{\mathit{air}}\right) \cdot V_{\infty} + A_{\mathit{exit}} \cdot \left(p_{\mathit{exit}} - p_{\infty}\right)}{p_{\infty} \cdot A_{0}} =$$

$$F_{\textit{thrust}} = \dot{m}_{\textit{air}} \cdot V_{\infty} \left[\left(\frac{f+1}{f} \right) \cdot \frac{V_{\textit{exit}}}{V_{\infty}} - 1 \right] + \frac{A_{\textit{exit}}}{A_0} \cdot \left(\frac{p_{\textit{exit}}}{p_{\infty}} - 1 \right)$$

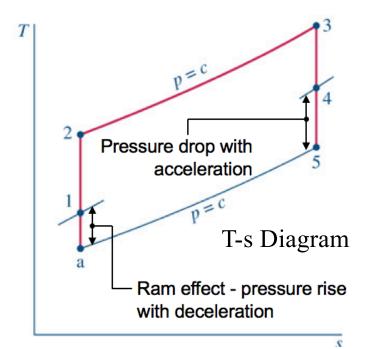
Ideal Ramjet Thermodynamic Cycle Analysis

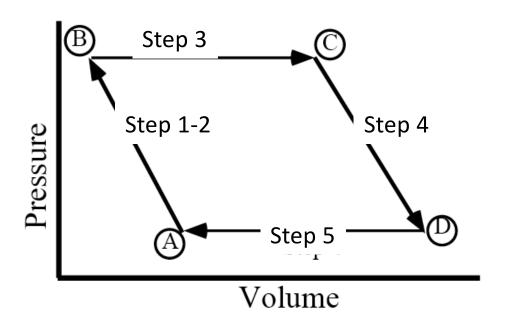


Region	Process	Ideal Behavior	Real
			Behavior
A to 1(inlet)	Isentropic flow	P_0,T_0 constant	P_0 drop
∞-1-2 (diffuser)	Adiabatic	P,T increase	P_0 drop
	Compression	P_0 drop	
2-3 (burner)	Heat Addition	P_0 constant, T_0	P_0 drop
		s Increase $\Delta s = \left(\frac{\Delta q}{T}\right)_{rev} > 0$	
3-4 (nozzle)	Isentropic	T_0,P_0 constant	s Increase
	expansion	$\Delta s > \Delta s_{rev}$	T_0 drop

Ideal Ramjet Cycle Analysis (2)

Step Process		
1) Intake (suck)	Isentropic Compression	
2) Compress the Air (squeeze)	Adiabatic Compression	
3) Add heat (bang)	Constant Pressure Combustion	
4) Extract work (blow)	Isentropic Expansion in Nozzle	
5) Exhaust	Heat extraction by surroundings	





Cycle Efficiency of Ideal Ramjet

$$\frac{\eta_{propulsive} \times \eta_{propulsive}}{\text{thermal}} \times \frac{\dot{W}_{p}}{\left(K.E._{exit} - K.E._{\infty}\right)} \times \frac{\left(K.E._{exit} - K.E._{\infty}\right)}{\dot{m}_{fuel} \cdot h_{fuel}} = \frac{\dot{W}_{p}}{\dot{m}_{fuel} \cdot h_{fuel}}$$

- Propulsive Power Output--> work perform by system in step 4 minus work required for step 1-2
- Net Heat Input --> heat input during step 3 (combustion)
 - heat lost in exhaust plume

Cycle Efficiency of Ideal Ramjet (2)

$$\frac{Net \ Power}{m_{air}} = (h_A - h_B) + \left(\frac{f+1}{f}\right) \cdot (h_C - h_D)$$

$$\frac{Net \ Heat \ Input}{m_{air}} = \left(\frac{f+1}{f}h_C - h_B\right)$$

$$\frac{Power}{m_{air}}$$

$$\frac{Net \ Work}{m_{air}}$$

$$\frac{Net \ Work}{m_{air}}$$

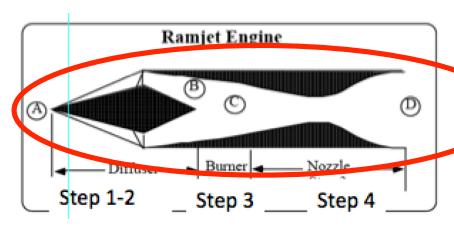
$$\frac{Net \ Heat \ Input}{m_{air}}$$

$$\frac{(h_A - h_B) + \left(\frac{f+1}{f}\right) \cdot (h_C - h_D)}{(f+1)}$$

Cycle Efficiency of Ideal Ramjet (3)

Add and Subtract $\left(\frac{f+1}{f}\right) \cdot h_C - h_B$ From Right Hand Side

$$\eta_{total} = \frac{\left(h_A - h_B\right) + \left(\frac{f+1}{f}\right) \cdot \left(h_C - h_D\right)}{\left(\frac{f+1}{f}\right) \cdot h_C - h_B} =$$



$$1 + \frac{\left(h_A - h_B\right) + \left(\frac{f+1}{f}\right) \cdot \left(h_C - h_D\right) - \left[\left(\frac{f+1}{f}\right) \cdot h_C - h_B\right]}{\left(\frac{f+1}{f}\right) \cdot h_C - h_B} = 1 - \frac{\left(\frac{f+1}{f}\right) \cdot h_D - h_A}{\left(\frac{f+1}{f}\right) \cdot h_C - h_B}$$

Cycle Efficiency of Ideal Ramjet (4)

• Assume ... calorically perfect gasses $\rightarrow h \sim Cp \cdot T$

$$\eta_{total} = 1 - \frac{\left(\frac{f+1}{f}\right) \cdot C_{p_{products}} T_D - C_{p_{air}} T_A}{\left(\frac{f+1}{f}\right) \cdot C_{p_{products}} T_C - C_{p_{air}} TB} = 1 - \frac{T_D - \left(\frac{f}{f+1}\right) \left(\frac{C_{p_{air}}}{C_{p_{products}}}\right) T_A}{T_C - \left(\frac{f}{f+1}\right) \left(\frac{C_{p_{air}}}{C_{p_{products}}}\right) T_B}$$

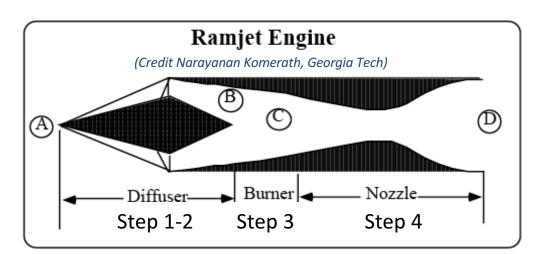
• For conceptual simplicity ... let ... f >> 1 ... and ... $Cp_{air} \sim Cp_{products}$

$$\eta_{total} \approx 1 - \frac{\left(T_D - \frac{C_{p_{air}}}{C_{p_{products}}}T_A\right)}{\left(\frac{C_{p_{air}}}{C_{p_{products}}}T_C - T_B\right)} = 1 - \frac{\left(T_D - T_A\right)}{\left(T_C - T_B\right)} = 1 - \frac{\left(\frac{T_D}{T_C} - \frac{T_A}{T_B}\frac{T_B}{T_C}\right)}{\left(1 - \frac{T_B}{T_C}\right)}$$

Cycle Efficiency of Ideal Ramjet (5)

• From C-->D flow is isentropic ...

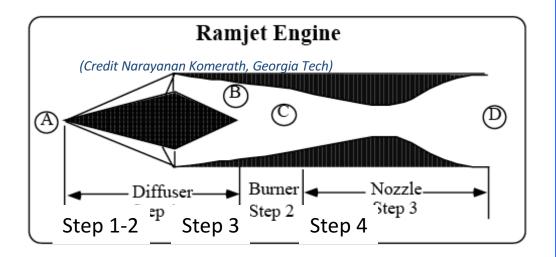
$$\rightarrow \frac{T_D}{T_C} = \left(\frac{P_D}{P_C}\right)^{\frac{\gamma - 1}{\gamma}}$$



$$\eta_{total} = 1 - \frac{\left(\frac{T_D}{T_C} - \frac{T_A}{T_B} \frac{T_B}{T_C}\right)}{\left(1 - \frac{T_B}{T_C}\right)} = 1 - \frac{\left(\left(\frac{P_D}{P_C}\right)^{\frac{\gamma - 1}{\gamma}} - \frac{T_A}{T_B} \frac{T_B}{T_C}\right)}{\left(1 - \frac{T_B}{T_C}\right)}$$

Cycle Efficiency of Ideal Ramjet (6)

Approximate as Adiabatic compression across diffuser



$$\left(\frac{P_A}{P_B}\right) = \left(\frac{P_A}{P_{0_A}} \times \frac{P_{0_A}}{P_{0_B}} \times \frac{P_{0_B}}{P_B}\right) = \left(\frac{T_A}{T_{0_A}}\right)^{\frac{\gamma}{\gamma - 1}} \times \frac{P_{0_A}}{P_{0_B}} \times \left(\frac{T_{0_B}}{T_B}\right)^{\frac{\gamma}{\gamma - 1}}$$

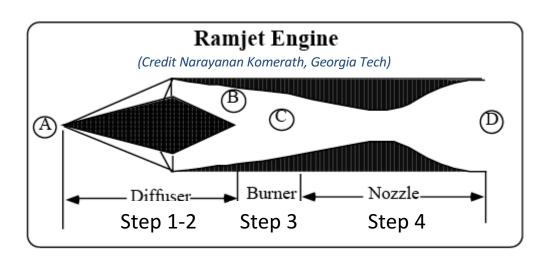
$$\to T_{0_A} = T_{0_B} \to solve \ for \to \frac{T_A}{T_B} = \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}}$$

Cycle Efficiency of Ideal Ramjet (7)

• Sub

$$\frac{T_A}{T_B} = \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}}$$

into efficiency equation

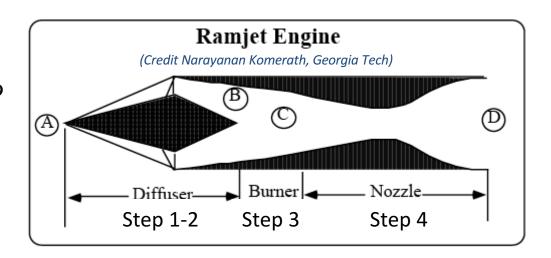


$$\eta = 1 - \frac{\left(\left(\frac{P_D}{P_C}\right)^{\frac{\gamma - 1}{\gamma}} - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} \frac{T_B}{T_C}\right)}{\left(1 - \frac{T_B}{T_C}\right)}$$

Cycle Efficiency of Ideal Ramjet (8)

Assume ideal nozzle $\rightarrow P_A = P_D$ ideal burner $\rightarrow P_B = P_C$

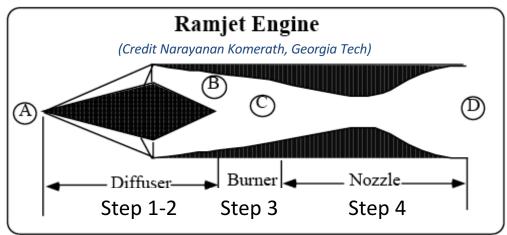
Factor Out
$$\left(\frac{P_A}{P_B}\right)^{\frac{\gamma-1}{\gamma}}$$



$$\eta = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \frac{\left(1 - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} \frac{T_B}{T_C}\right)}{\left(1 - \frac{T_B}{T_C}\right)} = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \frac{\left(T_C - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} T_B\right)}{\left(T_C - T_B\right)}$$

Cycle Efficiency of Ideal Ramjet (9)

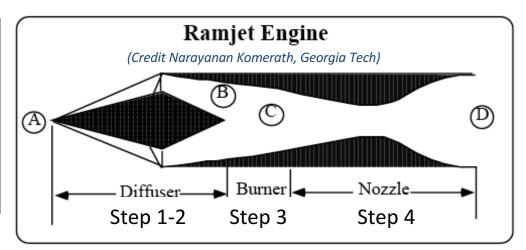
$$\eta = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \frac{\left(T_C - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} T_B\right)}{\left(T_C - T_B\right)}$$



- 1. Cycle Efficiency Proportional to Inlet Pressure ratio, P_B/P_A
- 2. Cycle Efficiency Proportional to combustor temperature difference T_C - T_B
- 3. As inlet total pressure ratio (P0_B/P0_A) goes down ... Cycle Efficiency Drops
- 4. Characteristic of a Brayton process, the cycle efficiency is anchored by the inlet compression process.

Cycle Efficiency of Ideal Ramjet (10)

$$\eta = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \frac{\left(T_C - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} T_B\right)}{\left(T_C - T_B\right)}$$

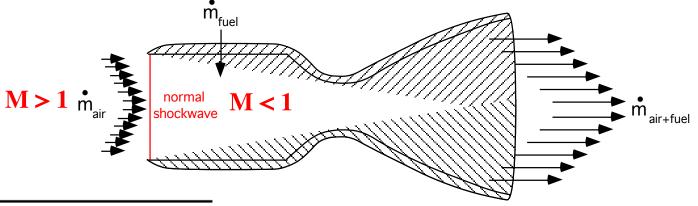


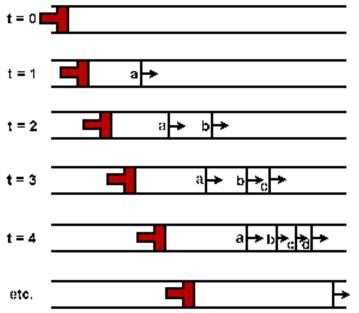
- 1. High Inlet Compression Ratio Desirable
- 2. Low Stagnation Pressure Loss Desirable
- 3. Large Temperature Change across Combustor Desirable
- 4. Ramjets Cannot Start from Zero Velocity

When
$$M_{\infty} \to 0 \to \underline{\eta_{total}} \to 1 - \frac{(T_C - T_B)}{(T_C - T_B)} = 0$$

Ideal Ramjet Example: Inlet and Diffuser

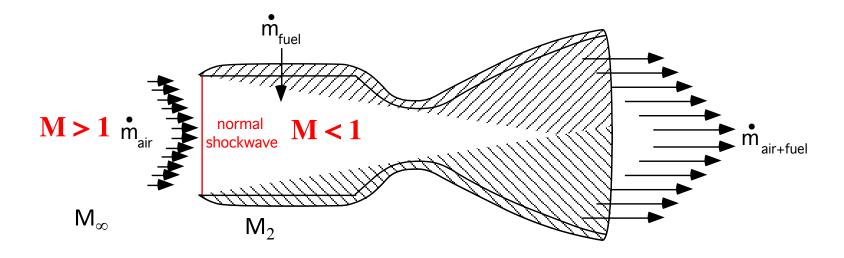
• Take a Rocket motor and "lop the top off"





- Works Ok for subsonic, but for supersonic flow ... can't cram enough air down the tube
- Result is a *normal shock wave* at the inlet lip

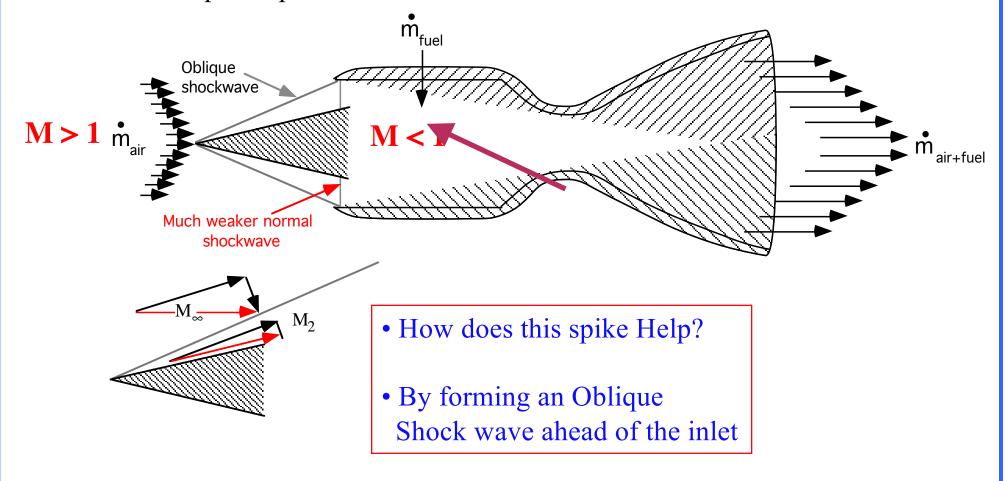
Ideal Ramjet Example: Inlet and Diffuser (2)



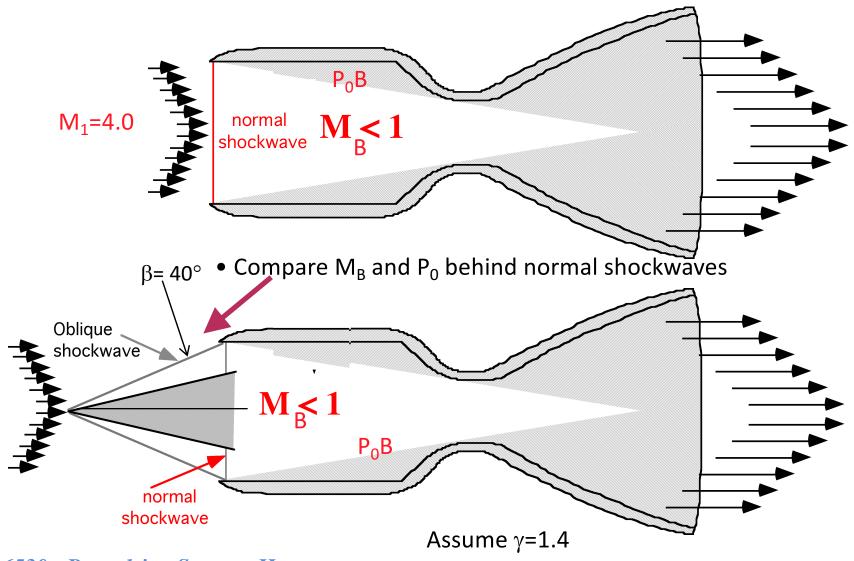
- Mechanical Energy is Dissipated into Heat
- Huge Loss in Momentum

Ideal Ramjet Example: Inlet and Diffuser (3)

• So ... we put a spike in front of the inlet

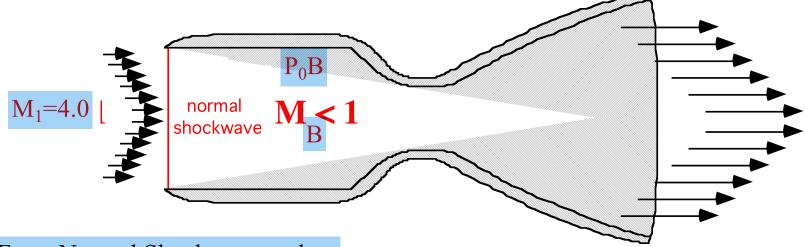


2-D Ramjet Inlet Example



MAE 6530 - Propulsion Systems II

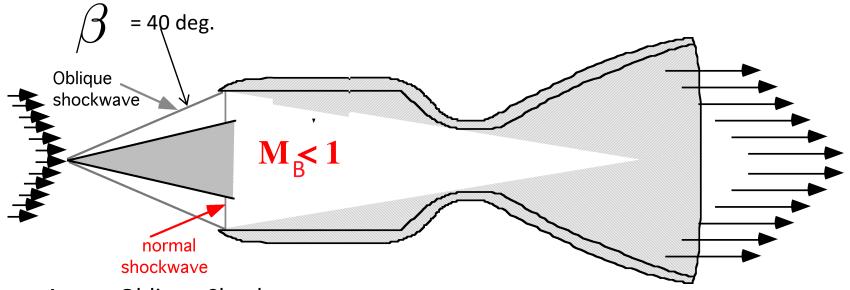
2-D Ramjet Inlet Example (3)



From Normal Shock wave solver

$$M_{\infty} \xrightarrow{normal ...shock} M_{B} = 0.434959 \Rightarrow \begin{bmatrix} \frac{P_{0_{B}}}{P_{0_{\infty}}} = 0.1388 \\ \frac{p_{B}}{p_{\infty}} = 18.5 \\ p_{\infty} \end{bmatrix}$$

2-D Ramjet Inlet Example (4)

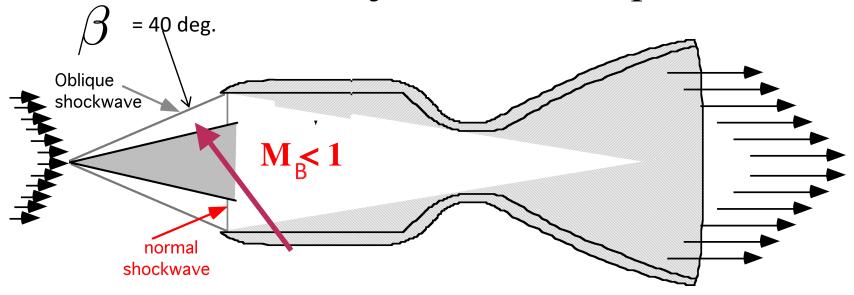


Across Oblique Shock wave

•
$$M_{1n} = M_1 \sin \beta_1 = 4 \sin \left(\frac{\pi}{180} 40\right) = 2.571 \longrightarrow M_2 = 0.5064$$

$$\tan(\theta) = \frac{2\{M_1^2 \sin^2(\beta) - 1\}}{\tan(\beta) \left[2 + M_1^2 \left[\gamma + \cos(2\beta)\right]\right]} \to \frac{180}{\pi} \operatorname{atan} \left(\frac{2\left(4^2 \sin^2\left(\frac{\pi}{180} 40\right) - 1\right)}{\left(\tan\left(\frac{\pi}{180} 40\right)\right) \left(2 + 4^2\left(1.4 + \cos\left(\frac{\pi}{180} 2 \cdot 40\right)\right)\right)}\right)$$

2-D Ramjet Inlet Example (5)

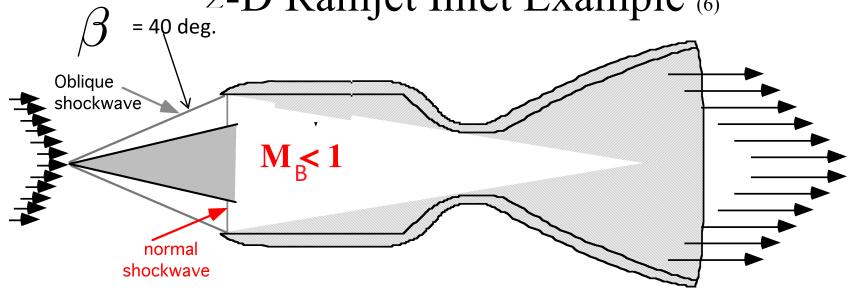


• Across Oblique Shock wave

$$M_2 n = 0.5064 \rightarrow M_2 = \frac{M_2 n}{\sin(\beta_1 - \theta)} = \frac{0.5064}{\sin(\frac{\pi}{180} (40 - 26.2))}$$
 =2.123

$$P_0 2/P_0 \infty = 0.4711$$

2-D Ramjet Inlet Example (6)



Across Oblique Shock wave

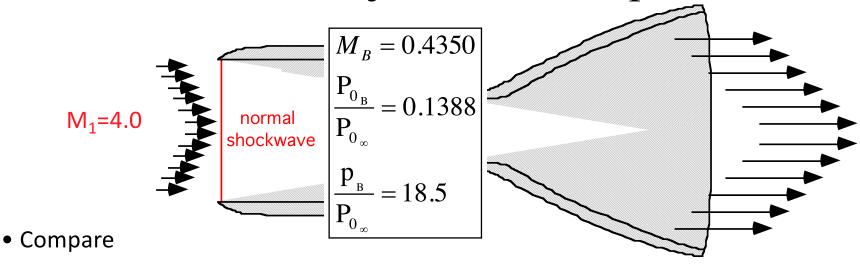
$$M_2 = 2.123 \xrightarrow{normal..shock} M_B = 0.557853 \Longrightarrow$$

$$\frac{P_{0_B}}{P_{0_2}} = 0.663531 \Rightarrow \frac{P_{0_B}}{P_{0_\infty}} = \frac{P_{0_B}}{P_{0_2}} \frac{P_{0_2}}{P_{0_\infty}} = (0.663531)(0.4711) = 0.3126$$

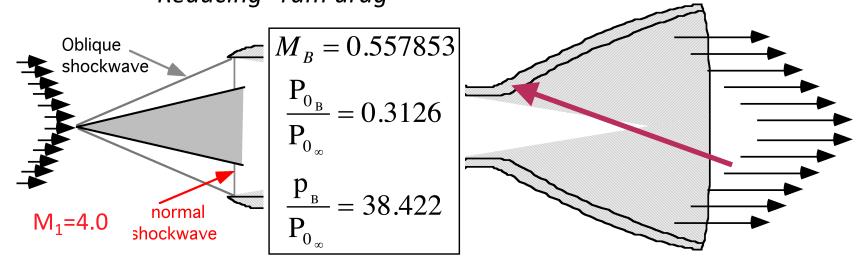
$$\frac{p_{_{B}}}{p_{_{\infty}}} = \frac{p_{_{B}}}{P_{_{0_{_{B}}}}} \times \frac{P_{_{0_{_{B}}}}}{P_{_{0_{_{\infty}}}}} \times \frac{P_{_{0_{_{\infty}}}}}{p_{_{\infty}}} = \frac{0.3126 \left(\left(1 + \frac{1.4 - 1}{2} 4^{2} \right)^{\frac{1.4}{(1.4 - 1)}} \right)}{\left(\left(1 + \frac{1.4 - 1}{2} 0.557853^{2} \right)^{\frac{1.4}{(1.4 - 1)}} \right)} = 38.422$$

MAE 6530 - Propulsion Systems II

2-D Ramjet Inlet Example (7)



• Spike aids in increasing Total Pressure recovery Reducing "ram drag"



2-D Ramjet Inlet Example (8)

• ... Continuing example ... Incoming Air to Ramjet

```
• Molecular weight = 28.96443 \text{ kg/kg-mole}

• \gamma = 1.40

• R_g = 287.056 \text{ J/°K-(kg)}

• T_{\infty} = 216.65 \text{ °K}

• p_{\infty} . = . 19.330 \text{ kPa}

• Combustor q = q/m = 500 \text{ kJ/kg}
```

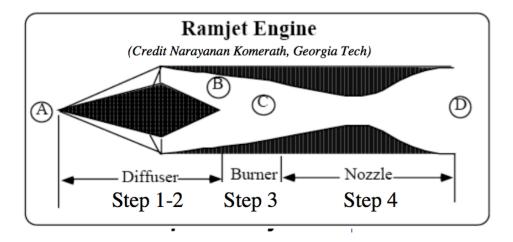
• Assume that mass of added fuel is negligible, exhaust and γ , R_g are the same

Compute free stream stagnation temperature

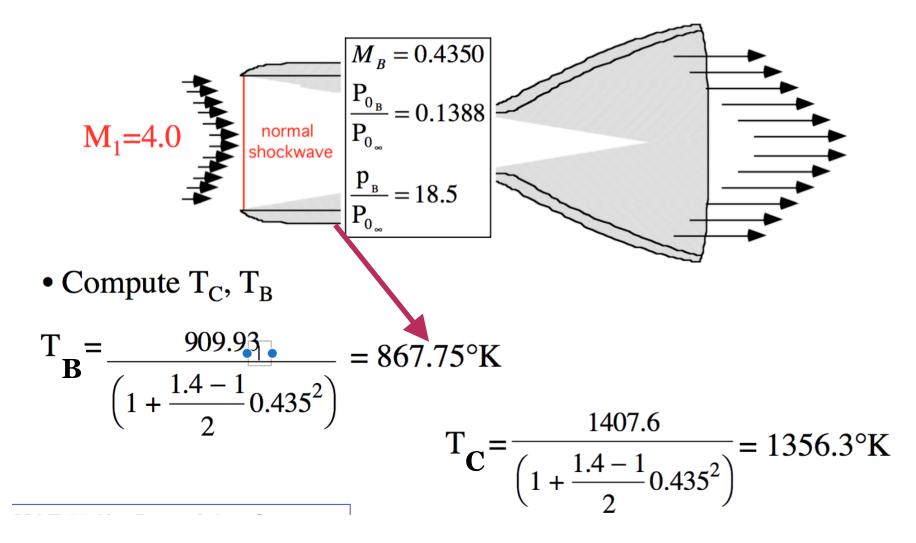
$$T_{0_{\infty}} = T_{\infty} \left[1 + \frac{\gamma - 1}{2} M_{\infty}^{2} \right] = 216.65 \left(1 + \frac{1.4 - 1}{2} 4^{2} \right) = 909.93^{\circ} \text{K}$$

Compute BURNER stagnation temperature

$$T_{0_c} = \frac{q + c_p T_{0_{\infty}}}{c_p} = \frac{500 \cdot 10^3 + 1004.696 (909.93)}{1004.696} = 1407.6 \text{ }^{\circ}\text{K}$$

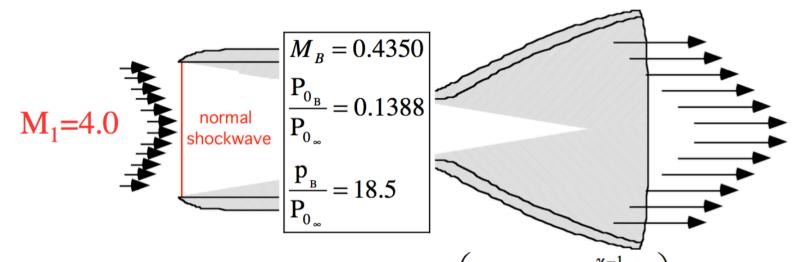


• Compute efficiency Normal shock inlet



MAE 6530 - Propulsion Systems II

• Compute efficiency Normal shock inlet



• Compute T_C, T_B

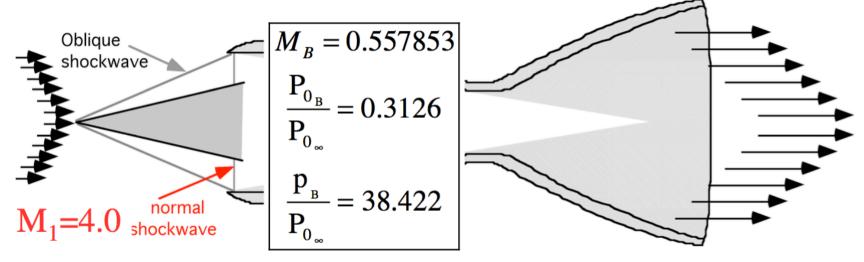
$$T_{\mathbf{B}} = 867.75^{\circ} K$$

$$T_c = 1356.3$$
°K

$$\eta = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \frac{\left(T_C - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} T_B\right)}{\left(T_C - T_B\right)} =$$

$$\frac{18.5^{\frac{-(1.4-1)}{1.4}} \left(1356.3 - \left(0.1388^{\frac{(1.4-1)}{1.4}}\right) 867.75\right)}{(1356.3 - 867.75)} = 0.2328$$

• Compute efficiency Oblique shock inlet

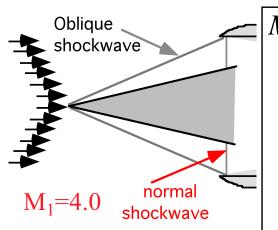


• Compute T_C , T_B

$$T_{\mathbf{B}} = \frac{909.93}{\left(1 + \frac{1.4 - 1}{2}0.557853^{2}\right)} = 856.61^{\circ} \text{K}$$

$$T_{\mathbf{C}} = \frac{1407.6}{\left(1 + \frac{1.4 - 1}{2}0.557853^{2}\right)} = 1325.1^{\circ} \text{K}$$

• Compute efficiency Oblique shock inlet



$$M_B = 0.557853$$

$$\frac{P_{0_B}}{P_{0_{\infty}}} = 0.3126$$

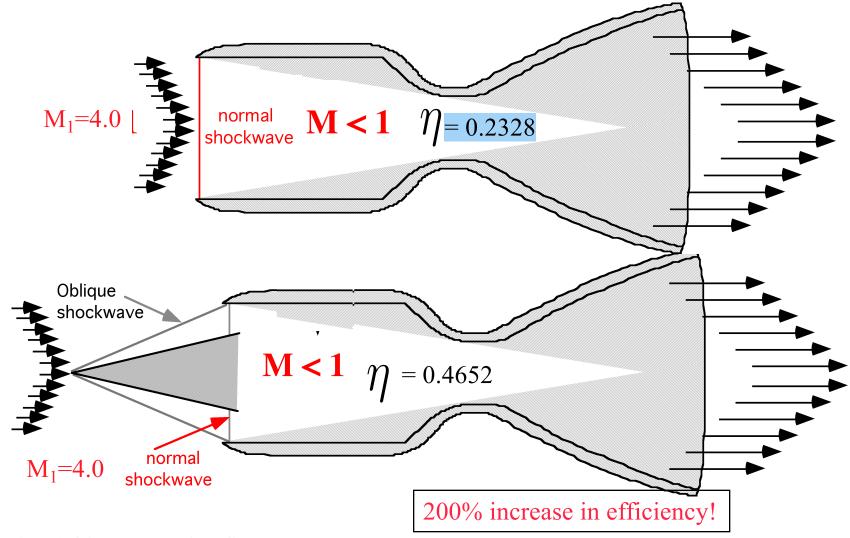
$$\frac{P_{B}}{P_{0}} = 38.422$$

$$\Gamma_{\rm C} = 856.61 \, {\rm °K}$$

$$T_{\rm B} = 1325.1^{\rm o} {\rm K}$$

$$\eta = 1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \left(T_C - \left(\frac{P_{0_B}}{P_{0_A}}\right)^{\frac{\gamma - 1}{\gamma}} T_B\right) = \frac{1 - \left(\frac{P_A}{P_B}\right)^{\frac{\gamma - 1}{\gamma}} \left(T_C - T_B\right)}{\left(\frac{1325.1}{1.4} - \left(0.3126 - \frac{(1.4 - 1)}{1.4}\right) 856.61\right)} = 0.4652$$

• Compute efficiency Oblique shock inlet

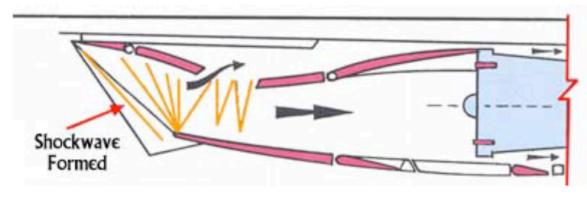


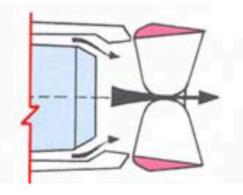
MAE 6530 - Propulsion Systems II

Supersonic Inlet: Condorde Inlet Design

Multi-stage Compression always Works Best For Stagnation Pressure Recovery!

• Mach 2 Cruise





"Starting" a Constant Geometry Ramjet Inlet

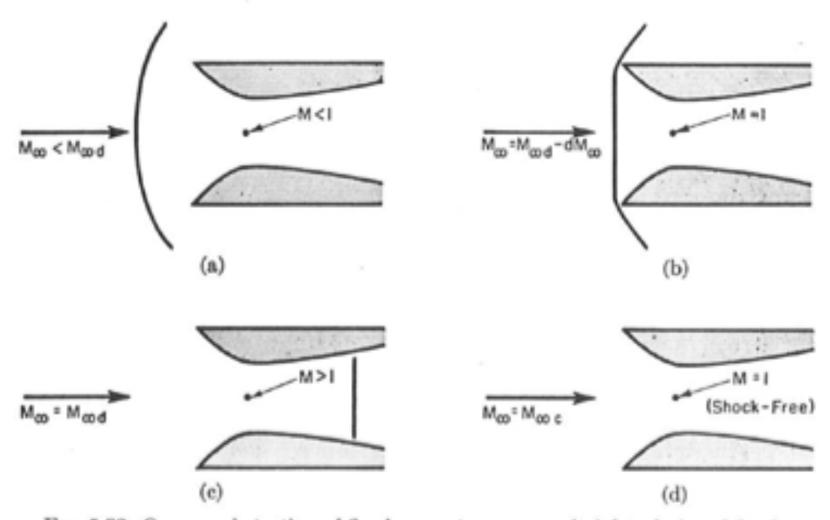


Fig. 5.33. Overspeed starting of fixed-geometry supersonic inlet, designed for freestream Mach Number M_{∞a}, and having contraction ratio (A₂/A₁)_c.

