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Section 5.4: Non-Ideal TurboJet Operation
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Idealized Turbojet Model and The Brayton Cycle
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Idealized Assumptions:
1) Inlet and Diffuser are Isentropic
2) Compressor, Turbine ~ Isentropic
3) Burner @Low Mach Number, Constant 

Pressure
4) Turbine Work = Compressor Work
5) Nozzle is Isentropic
6) Ideally expanded nozzle where pexit = p∞
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How is this Idealized Model Unrealistic?
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• Remember, everywhere there is an irreversibility, then we have entropy growth 
and a loss of stagnation pressure. Stagnation pressure losses limit the overall 
efficiency of the propulsion system,

• We have already studied two of most significant non-ideal mechanisms … inet 
shock waves and stagnation pressure losses across combustor
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How is this Idealized Model Unrealistic? (2)
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• Across shock wave(s) entropy increases and we get a resulting stagnation pressure loss, 
and limits overall system efficiency

• Other sources of stagnation pressure losses include nozzle stagnation pressure losses are 
associated with viscous skin friction. 
• Stagnation pressure losses across the burner due to heat addition also cause pb to be 
always less than one. 
• Additional reduction of pb occurs due to wall friction, nonzero burner exit Mach number,  
and injector drag to to Reynolds stresses (right angle injection into flow). 
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Combustor Losses and Inefficiencies
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• Assuming Mean Values for Cp, g, Mw, Rg, Conservation of Mass and Momentum across the 
combustor gives (MAE 5420 Lecture 5.4)

• Conservation of Energy across combustor gives Gives
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Combustor Losses and Inefficiencies (2)
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• Finally, second law of thermodynamic gives

And …Solving for Stagnation Pressure Ratio
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• In addition to loss of stagnation pressure, also necessary to account for incomplete 
combustion, and radiation/conduction heat losses to combustor walls. Combustor efficiency 
is defined directly from energy balance across burner … 
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Combustor Losses and Inefficiencies (3)
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• Thus the collected conservation equations are 
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• Parametric equation set allows plot of stagnation pressure ratio as a function of 
compressor outlet Mach number (combustor inlet Mach number) M3
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Combustor Losses and Inefficiencies (4)
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• Example

Combustor Inlet 
Mach Number Range 
from 0 to 0.5 …
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Combustor Losses and Inefficiencies(4)
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• Stagnation pressure losses across the burner due to heat addition cause pb to be always 
less than one …rule of thumb is
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Compressor and Turbine Losses and 
Inefficiencies
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• The shaft that connects the turbine and compressor is subject to frictional losses in 
the bearings that support the shaft and a shaft mechanical efficiency is defined using 
the work balance across the compressor and turbine. Typical shaft efficiencies are 
slightly less than unity.

• For the ideal case we have analyzed the compression and turbine cycles are 
isentropic, i.e.  

• But with losses in these cycles, these relationships no longer strictly hold, and an 
adjustment is necessary to account for the losses  
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Compressor and Turbine Losses and 
Inefficiencies (2)
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• Defining

• and 
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Compressor and Turbine Losses and 
Inefficiencies (3)
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• The efficiencies { hpc , hpt } allow the relationship between compressor/turbine 
temperature and pressure ratios as a “polytropic process,” The polytropic process is a 
measure of the degree to which the compression process is isentropic,

and  … 
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Modern compressors are designed to have 
values of hpc in the range 0.88 to 0.92. 

Modern turbines are designed to 
values of hpt in the range 0.91 to 0.94. 
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Adjusted Brayton Cycle Plot for Non-Ideal 
TurboJet Operation
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h-s path of a turbojet with non-ideal compressor and turbine. 

P03

P04

P05

P0e
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• Engine operates at a free stream Mach number, M∞ = 0.80
• Cruise Altitude is in the stratosphere, 11 km so T∞ = 216.65 K, p∞ =22.63 kPa.
• The design turbine inlet temperature, T04 = 2000 K (1726.85 oC)
• The design compressor ratio range, pc = 2-10 . 
• Relevant area ratios are A2 /A*

4 = 9.65 and A2/A1throat = 1.45. 
• Inlet throat area A1Throat = 2000 cm2 (50.463 cm, 19.87” diameter)
• Assume the compressor, burner and turbine all operate ideally. 
• Converging/Diverging type Nozzle with choked throat
• Stagnation pressure losses due to wall friction in the inlet and nozzle are negligible.
• Octane (Gasoline) Fuel, hf = 49.47 MJ/kg

Part 1. Assume sonic nozzle exit, pc=10.0 …. CALCULATE
a) Compressor Operating Line, Plot pc vs. Corrected massflow, pc = 2à10
b) Overlay Operating Line on J-85 Compressor Map 

• You can manually plot Operating line on Map Image or Use .xls file link for Compressor map
• What is the Design Operating Condition at 100% Rotor Speed 

• (corrected massflow, compression ratio)
• Plot the Engine Surge and Choke Margins as a function of % Rotor Speed

• Surge Margin = 
• Choke margin = 

c) Plot Diffuser Throat, Compressor face Mach numbers, AND Inlet Capture Area vs pc
d) Plot Fuel-to-Air Ratio (1/f) vs. pc, as required to maintain T04 at 2000 K

Turbojet, Matching Example (2)

1
A2

Aexit

100%×
!mw − !msurge, choke

!mw

⎛
⎝⎜

⎞
⎠⎟
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1

Stephen Whitmore
2   .. 10

Stephen Whitmore
Note: the Nozzle Throat Area for this Problem must Vary to
Accommodate the Changes in Compression Ratio �
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Turbojet, Matching Example (3)

1 A2 Aexit

Assume 
g, cp, Mw are 
constant 
across engine

Stephen Whitmore
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Turbojet, Matching Example (4)

1 A2 Aexit

Parameter Definitions
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Questions??


