

UNIVERSITY

Section 3 Rocket Science Review 103: Estimating the Launch Vehicle Drag Coefficient

Newton's Laws as Applied to "Rocket Science"

... its not just a job ... its an adventure

Newtonian Flow Analysis

Medienteel & Flarcepeee Engineering

UtahState

Fin Leading Edge Drag

- Stagnation Pressure Coefficient calculated based on Mach number Normal to leading edge of fins
- Scaled by leading edge area, *W*•*t*
- Assumed fin thickness, t

$$C_{p_{\max}} = \frac{q_c - p_{\infty}}{\overline{q}} = \frac{p_{\infty} \cdot \left(1 + \frac{\gamma - 1}{2} M_{\perp}^2\right)^{\frac{\gamma}{\gamma - 1}} - p_{\infty}}{\frac{\gamma}{2} p_{\infty} M_{\perp}^2} = \frac{\left(1 + \frac{\gamma - 1}{2} \cdot \left(M_{\infty} \cdot \cos \theta_{L.E.}\right)^2\right)^{\frac{\gamma}{\gamma - 1}} - 1}{\frac{\gamma}{2} \cdot \left(M_{\infty} \cdot \cos \theta_{L.E.}\right)^2}$$

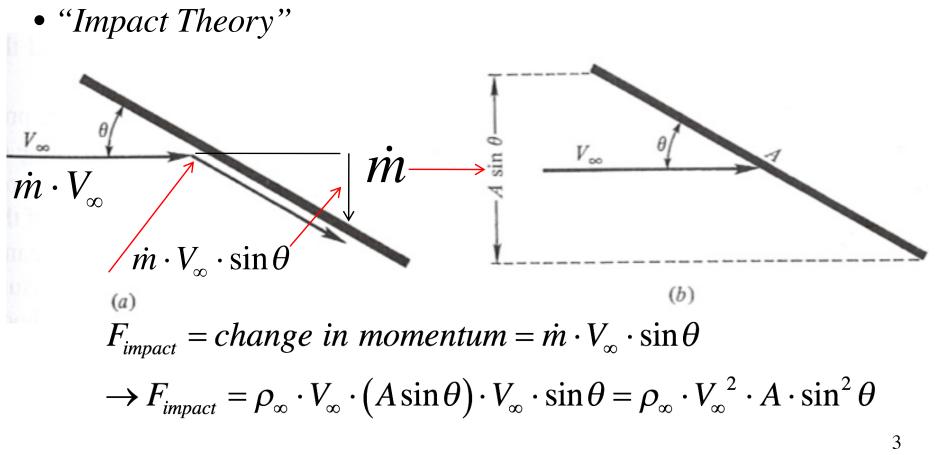
$$\left(C_{D_{L.E.}}\right)_{iotal}_{fins} = \sum_{i=1}^{N_{fins}} \left(\frac{W_i \cdot t_i}{A_{ref}}\right) \cdot \left\{\left(C_{P\max}\right)_{subsonic}\right\}_i = \sum_{i=1}^{N_{fins}} \left(\frac{W_i \cdot t_i}{A_{ref}}\right) \cdot \left\{\frac{\left(1 + \frac{\gamma - 1}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2\right)^{\frac{\gamma}{\gamma - 1}} - 1}{\frac{\gamma}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2}\right\}_i = \sum_{i=1}^{N_{fins}} \left(\frac{W_i \cdot t_i}{A_{ref}}\right) \cdot \left\{\frac{\left(1 + \frac{\gamma - 1}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2\right)^{\frac{\gamma}{\gamma - 1}} - 1}{\frac{\gamma}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2}\right\}_i = \sum_{i=1}^{N_{fins}} \left(\frac{W_i \cdot t_i}{A_{ref}}\right) \cdot \left\{\frac{\left(1 + \frac{\gamma - 1}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2\right)^{\frac{\gamma}{\gamma - 1}} - 1}{\frac{\gamma}{2} \cdot \left(M_\infty \cdot \cos \theta_{L.E.}\right)_i^2}\right\}_i$$

Tends to Over-predict drag, Model can be refined using Newtonian Flow Theory MAE 6530, Propulsion Systems II

UtahState

Newtonian Flow Analysis

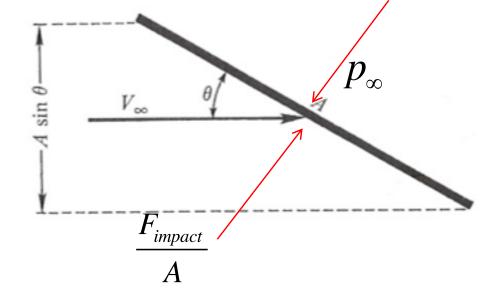
•Newton had an Often unrecognized original contribution to Fluid Mechanics Propositions 34 and 35 in *"Principia..."*



Medicination Considerations Engineering

Newtonian Flow Analysis (2)

$$F_{impact} = \rho_{\infty} \cdot V_{\infty}^{2} \cdot A \cdot \sin^{2} \theta \rightarrow \left[p(\theta) = \frac{F_{impact}}{A} + p_{\infty} = \rho_{\infty} \cdot V_{\infty}^{2} \cdot \sin^{2} \theta + p_{\infty} \right]$$



Newton Ignores the random motion of the molecules and Considers only the linear or translational motion

$$C_{p}(\theta) = \frac{p(\theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = \frac{\rho_{\infty} \cdot V_{\infty}^{2} \cdot \sin^{2}\theta + p_{\infty} - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = 2 \cdot \sin^{2}\theta$$

MAE 6530, Propulsion Systems II

UtahState

UNIVERSIT

Medicinated & Flarospece Engineering

Newtonian Flow Analysis (3)

$$C_{p}(\theta) = \frac{p(\theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = 2 \cdot \sin^{2}\theta$$

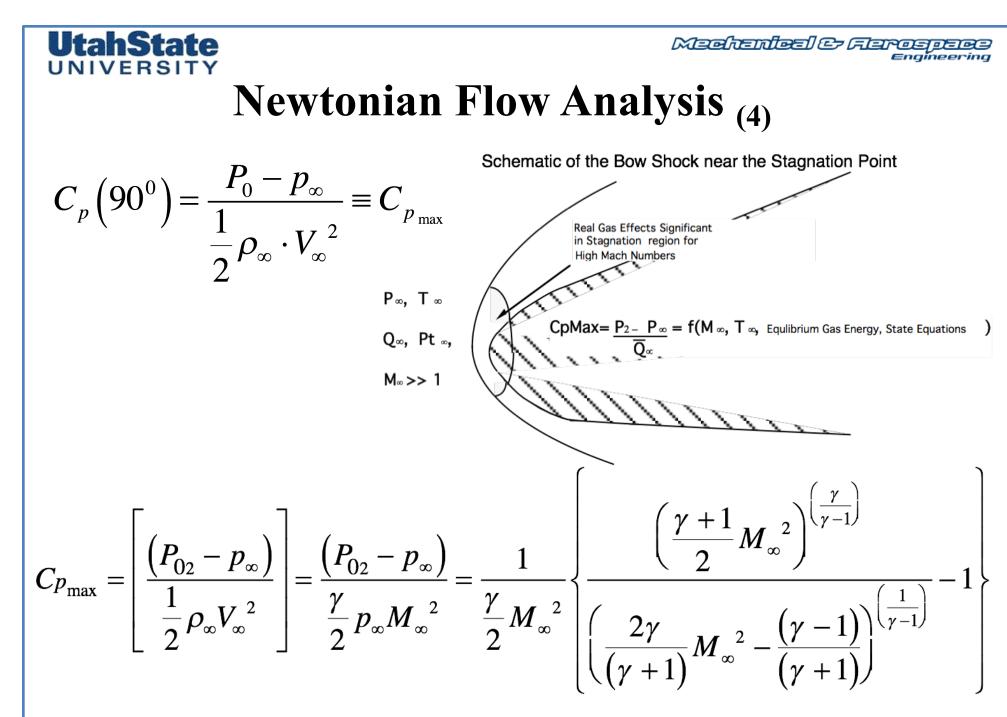
UtahState

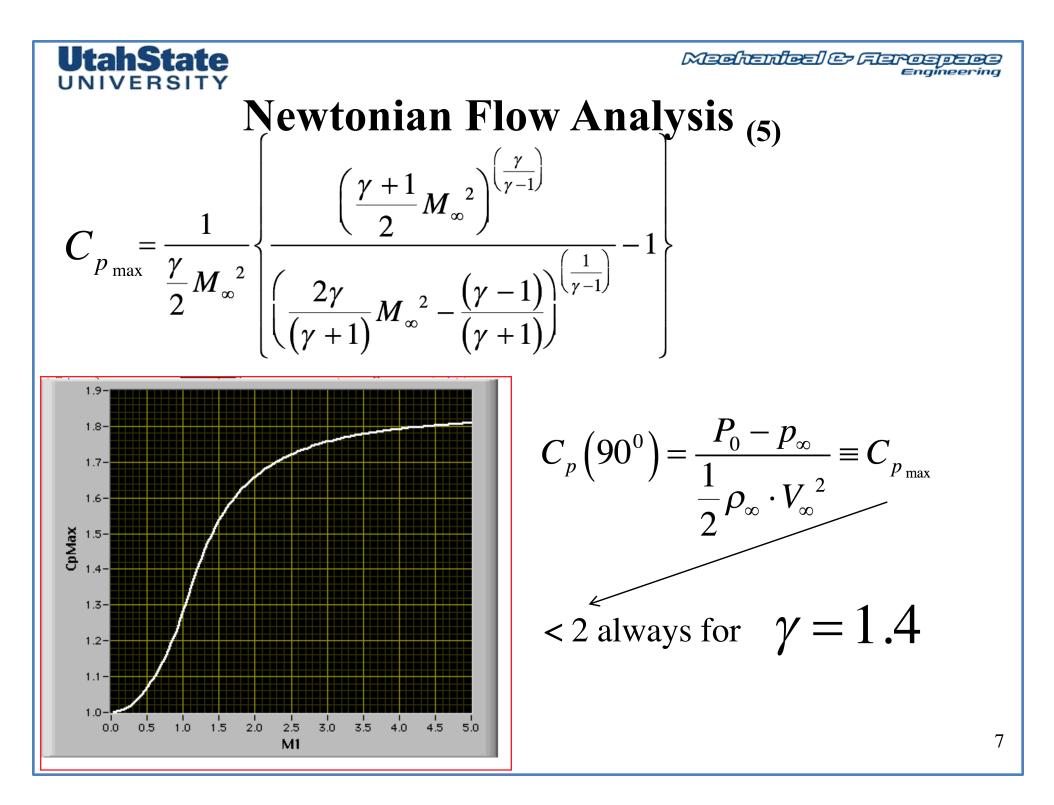
What happens in Newtonian Model when

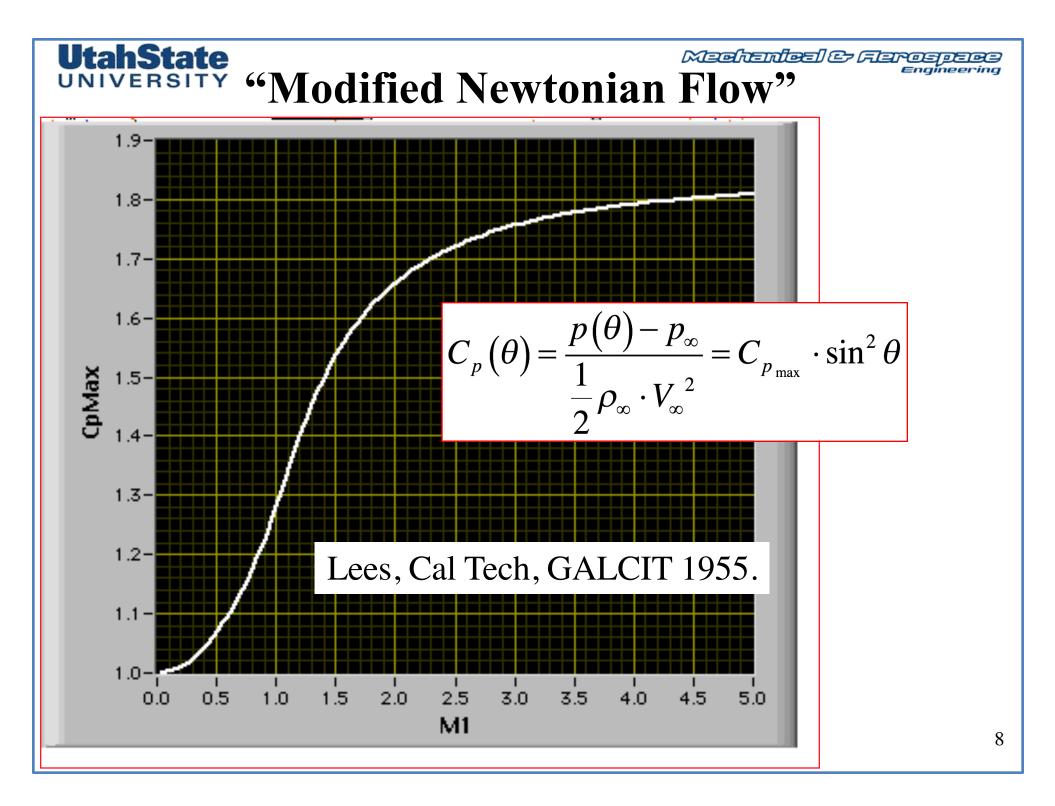
$$\theta = 90^{\circ}$$
 ? $C_p(90^{\circ}) = 2 \cdot \sin^2(90^{\circ}) = 2$

But for direct impact ...

$$p(90^{\circ}) = P_0 \to C_p(90^{\circ}) = \frac{P_0 - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} \equiv C_{p_{\max}}!$$







UtahState UNIVERSITY Modified Newtonian Flow (2)

$$C_{p}(\theta) = \frac{p(\theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = C_{p_{\max}} \cdot \sin^{2}\theta$$

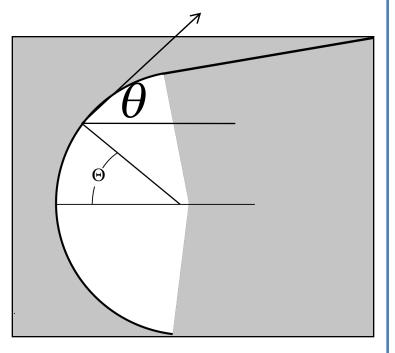
Often convenient to express model in terms of a Polar surface coordinate

$$\Theta = 90^{\circ} - \theta$$

$$C_{p}(\Theta) = \frac{p(\Theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = C_{p_{\max}} \cdot \sin^{2}(90^{\circ} - \Theta) =$$

$$C_{p_{\max}} \cdot \left[\sin(90^{\circ}) \cdot \cos(\Theta) - \sin(\Theta) \cdot \cos(90^{\circ})\right]^{2}$$

$$\Rightarrow C_{p}(\Theta) = \frac{p(\Theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = C_{p_{\max}} \cdot \cos^{2}(\Theta)$$



Expressed in terms of pressure ratio

$$C_{p}(\Theta) = \frac{p(\Theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = C_{p_{\max}} \cdot \cos^{2}(\Theta) \Rightarrow \frac{p(\Theta) - p_{\infty}}{\frac{\gamma}{2}p_{\infty} \cdot M_{\infty}^{2}} = C_{p_{\max}} \cdot \cos^{2}(\Theta)$$

$$\frac{p(\Theta)}{p_{\infty}} = 1 + \frac{\gamma}{2} \cdot M_{\infty}^{2} \cdot C_{p_{\max}} \cdot \cos^{2}(\Theta)$$

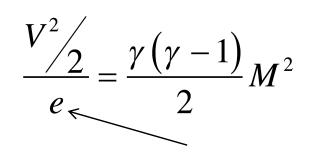
$$\Theta = 90^{\circ} - \theta$$

UtahState UNIVERSITY Modified Newtonian Flow (4)

$$\Rightarrow C_{p}(\Theta) = \frac{p(\Theta) - p_{\infty}}{\frac{1}{2}\rho_{\infty} \cdot V_{\infty}^{2}} = C_{p_{\max}} \cdot \cos^{2}(\Theta)$$

"equivalent to infinite Mach number assumption"

• As derived in section 3



For Newtonian model ... Newton Ignores the random motion of the molecules and Considers only the linear or translational motion

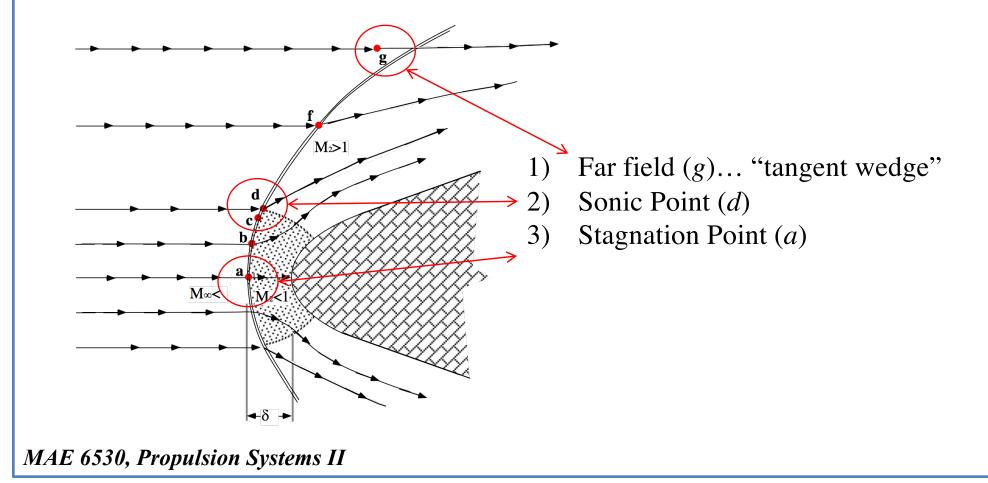
Mach number is a measure of the ratio of the fluid Kinetic energy to the fluid internal energy (direct motion To random thermal motion of gas molecules) -- Fundamental Parameter of Compressible Flow --

UNIVERSITY

Example 3

Mechanical & Flarospece

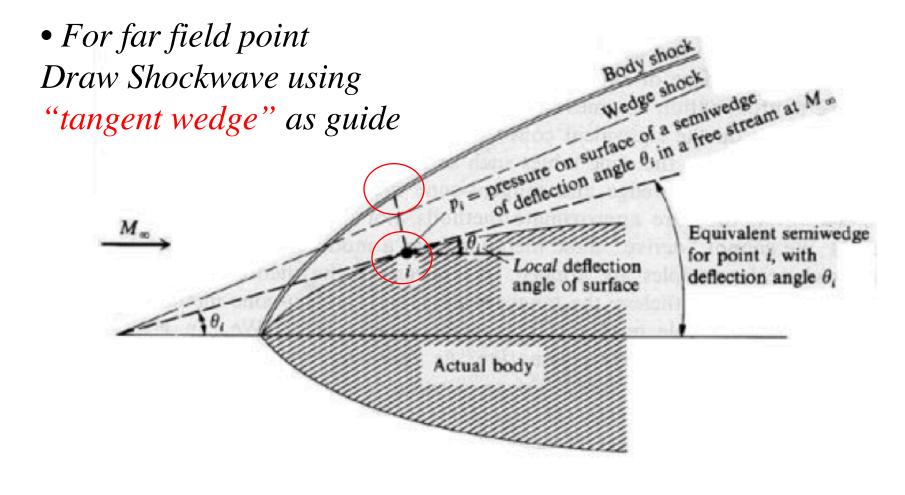
- Example: Cylindrically Blunted 2-D wedge, M=10.0, 1-cm Radius
- Map conditions at three points along shock



Medicinies Considering

Example 3 (2)

• Example Cylindrically Blunted 2-D wedge, M=10.0 1-cm Radius



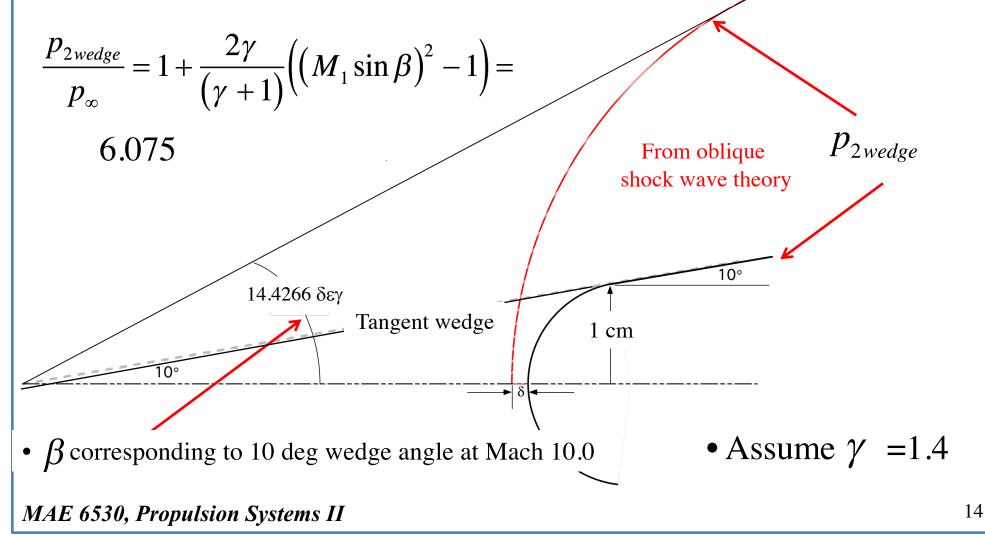
UtahState

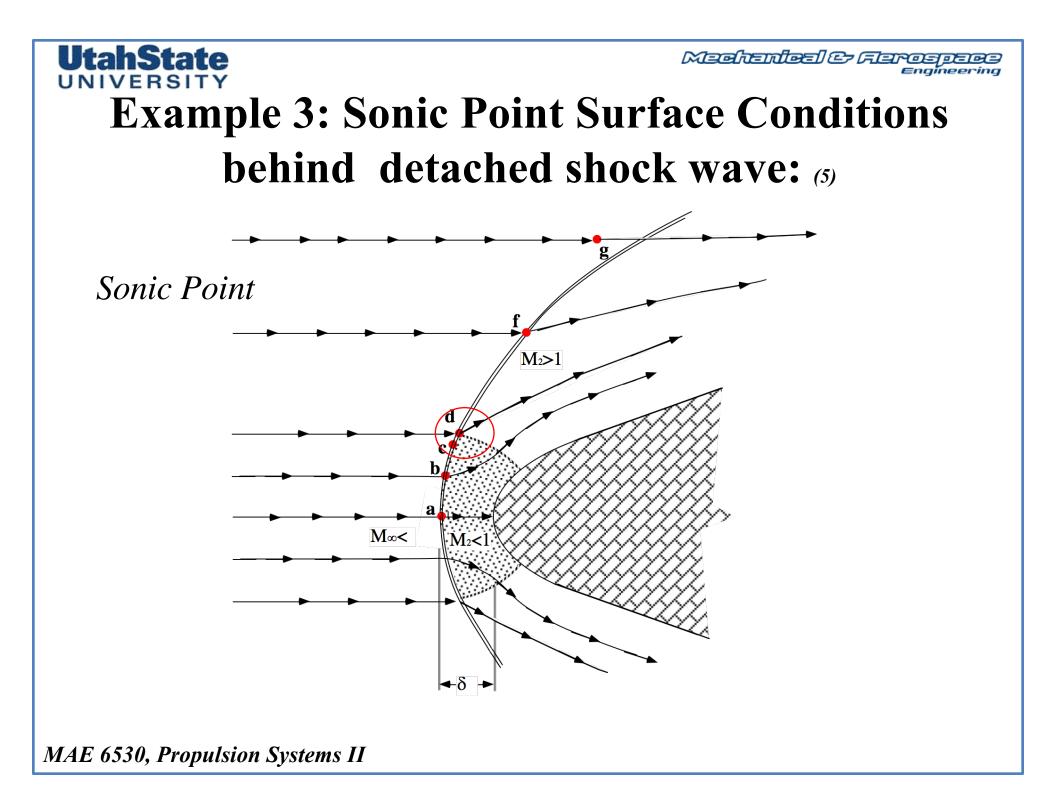
Example 3 (3)

- Example Cylindrically ' Blunted 2-D wedge, M=10.0 1-cm Radius
- Draw Shockwave using "tangent wedge" as guide

UtahState

UNIVERSIT





Medicinated & Flarospece Engineering

Example 3 (6)

• Compute Standoff Distance

UtahState

UNIVERSE

$$\frac{\delta}{D} = 0.193 \cdot e^{\frac{4.67}{M_{\infty}^2}} = 2 \cdot 1 \cdot 0.193 \exp\left(\frac{4.67}{1.75^2}\right) = 0.4044 \text{ cm}$$

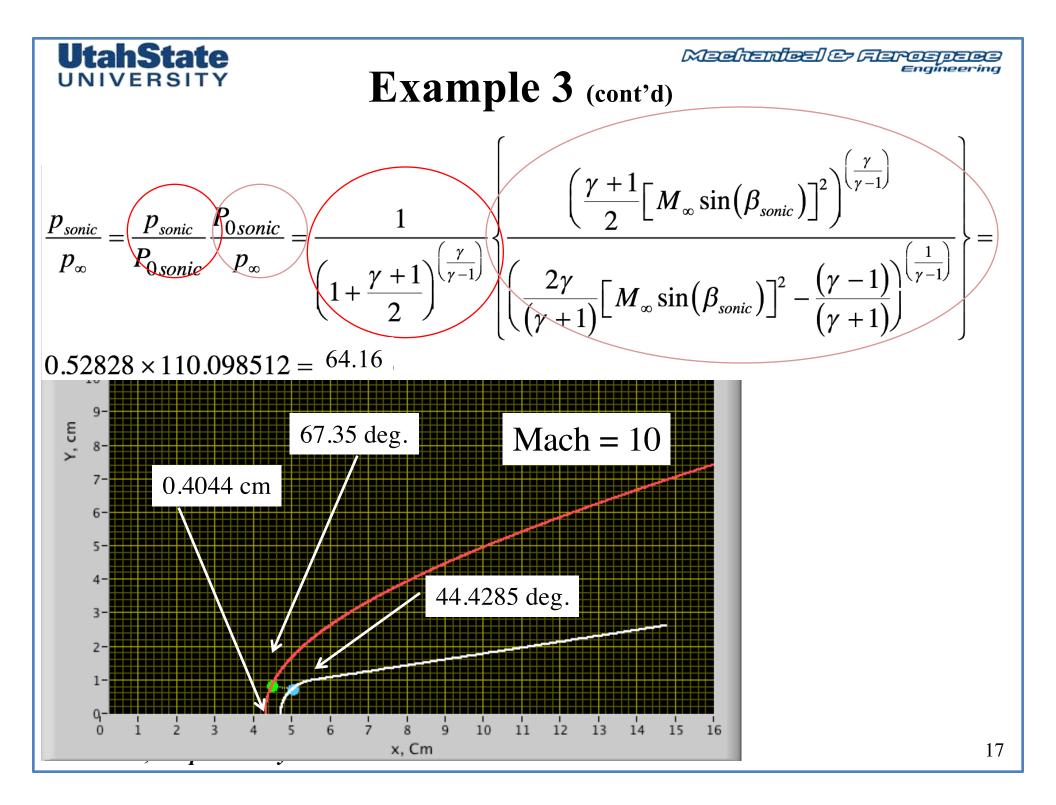
• Compute Sonic Point on Shock

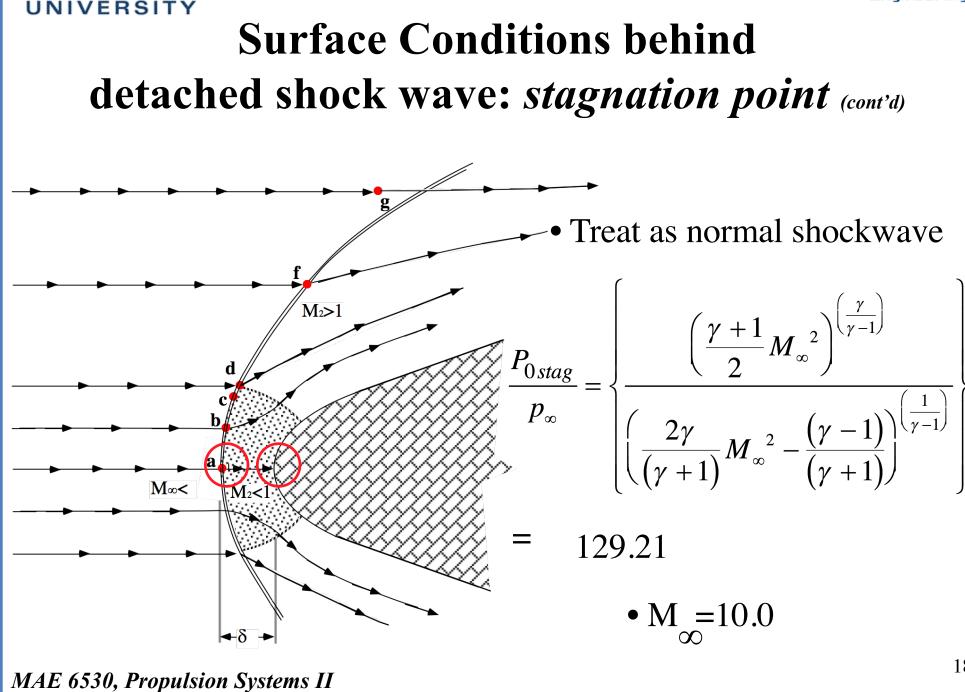
$$\beta_{sonic} = \frac{180}{\pi} \sin^{-1} \sqrt{\frac{(\gamma - 3)M_1^2 + (\gamma + 1)M_1^4 + \sqrt{16\gamma M_1^4 + [(\gamma - 3)M_1^2 + (\gamma + 1)M_1^4]^2}}{4\gamma M_1^4}} = 67.335 \text{ deg.}$$

• Compute Sonic Point on Surface

$$\tan(\theta_{sonic}) = \frac{2\left\{M_1^2 \sin^2(\beta_{sonic}) - 1\right\}}{\tan(\beta_{sonic})\left[2 + M_1^2\left[\gamma + \cos(2\beta_{sonic})\right]\right]} = 44.428 \text{ deg.}$$

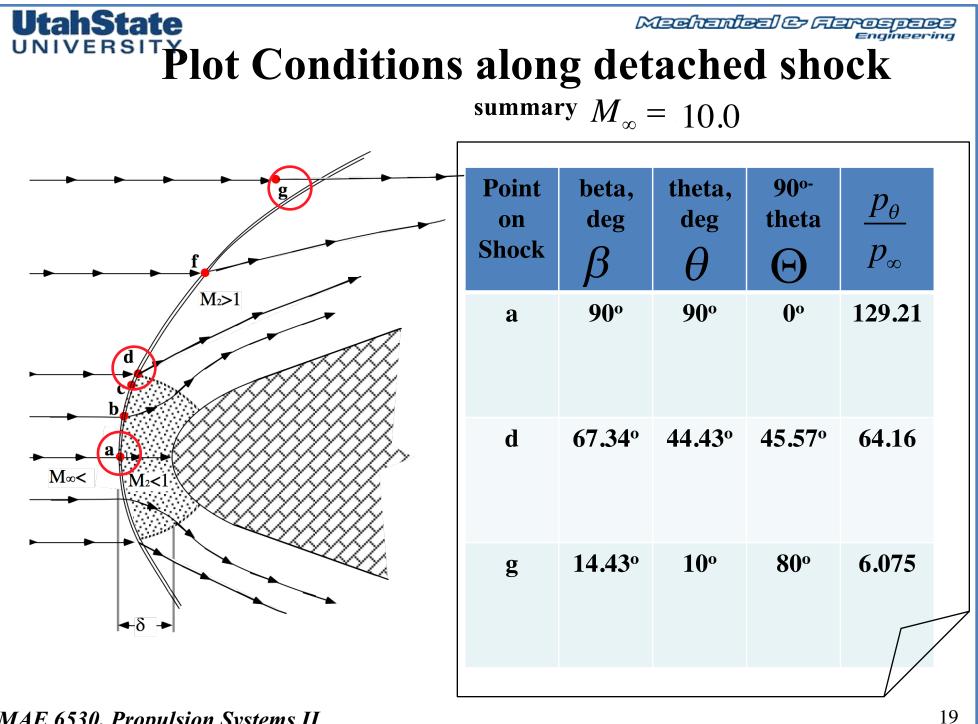
See for derivation: http://mae-nas.eng.usu.edu/MAE_5420_Web/section8/section8.3.pdf MAE 6530, Propulsion Systems II

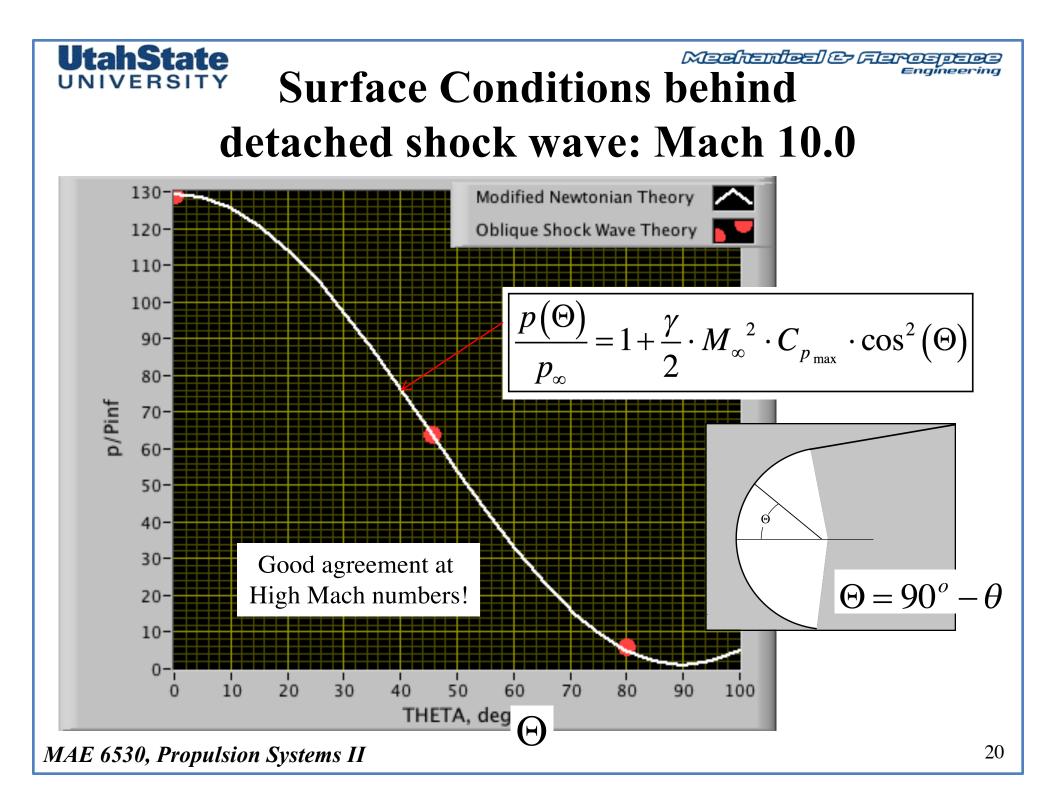


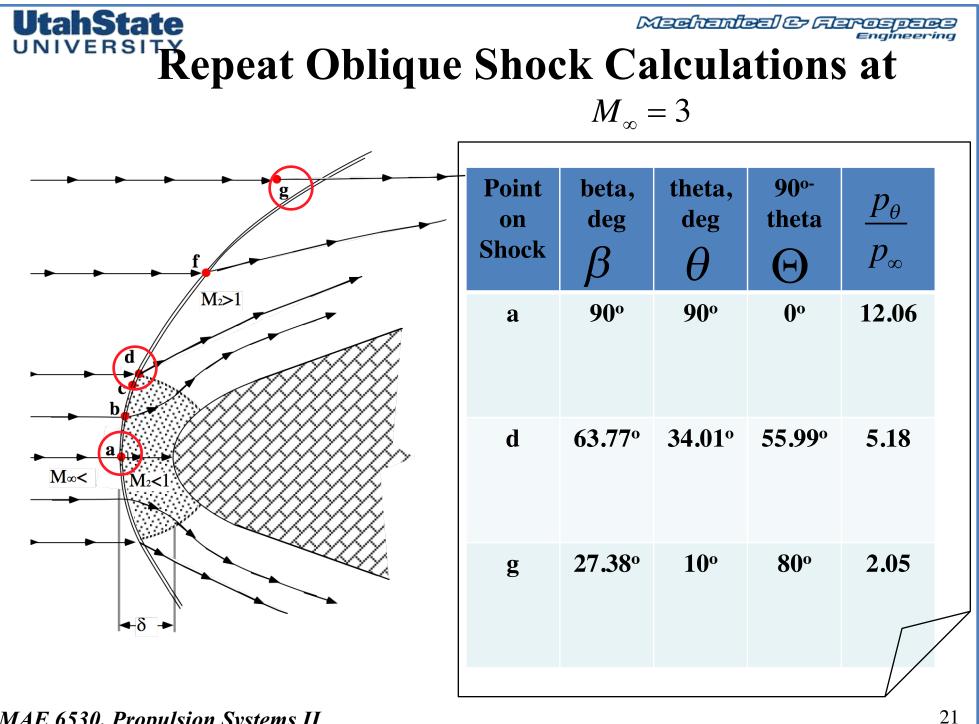


UtahState

18







Medicination Considering Engineering **UtahState** UNIVERSITY **Surface Conditions behind** detached shock wave: Mach 3.0 13-Modified Newtonian Theory Oblique Shock Wave Theory 12-11- $M_{\infty} = 3$ 10-9-8 Á p/Pinf 7 6 5 $\Theta = 90^{\circ} - \theta$ 4 Comparison is not nearly 3as good? Why? 2-1. 50 10 20 30 40 60 70 80 90 100 0 THETA, deg (H) 22 MAE 6530, Propulsion Systems II

Medicinies & Flarospece Engineering **UtahState** UNIVERSITY **Surface Conditions behind** detached shock wave: Mach 3 13 -Modified Newtonian Theory $M_{\infty} = 3$ Oblique Shock Wave Theory 12-"Calibrated" Newtonian Theory 11-10 - $\mathcal{E} = 0.074$ g. 8 p/Pinf $\epsilon = 0.00$ $\frac{p_{\Theta}}{r} = 1 + \frac{\gamma}{2} M_{\infty}^{2} C_{P_{Max}} \left[\cos^{2} \Theta + \varepsilon \sin^{2} \Theta \right]$ p_{∞} 5. $\rightarrow \varepsilon \Rightarrow$ "calibration" ≈ 0.074 4 "calibrated" flow 3-With curve fit 2-1 10 20 50 30 60 70 80 90 40 100 THETA, deg

Surface Conditions behind detached shock wave: *Surface plot*

• In limit as M->infinity Modified Newtonian flow model is A good descriptor of the local surface pressures

$$\frac{p_{\Theta}}{p_{\infty}} = 1 + \frac{\gamma}{2} M_{\infty}^{2} C p_{Max} \cos^{2} \Theta$$

• At lower Mach numbers we include a "calibration" term

$$\frac{p(\Theta)}{p_{\infty}} = 1 + \frac{\gamma}{2} \cdot M_{\infty}^{2} \cdot C_{p_{\max}} \cdot \left[\cos^{2}(\Theta) + \varepsilon \cdot \sin^{2}(\Theta)\right]$$

MAE 6530, Propulsion Systems II

UtahState

UtahState UNIVERSITY

Medicinated & Flarospece Engineering

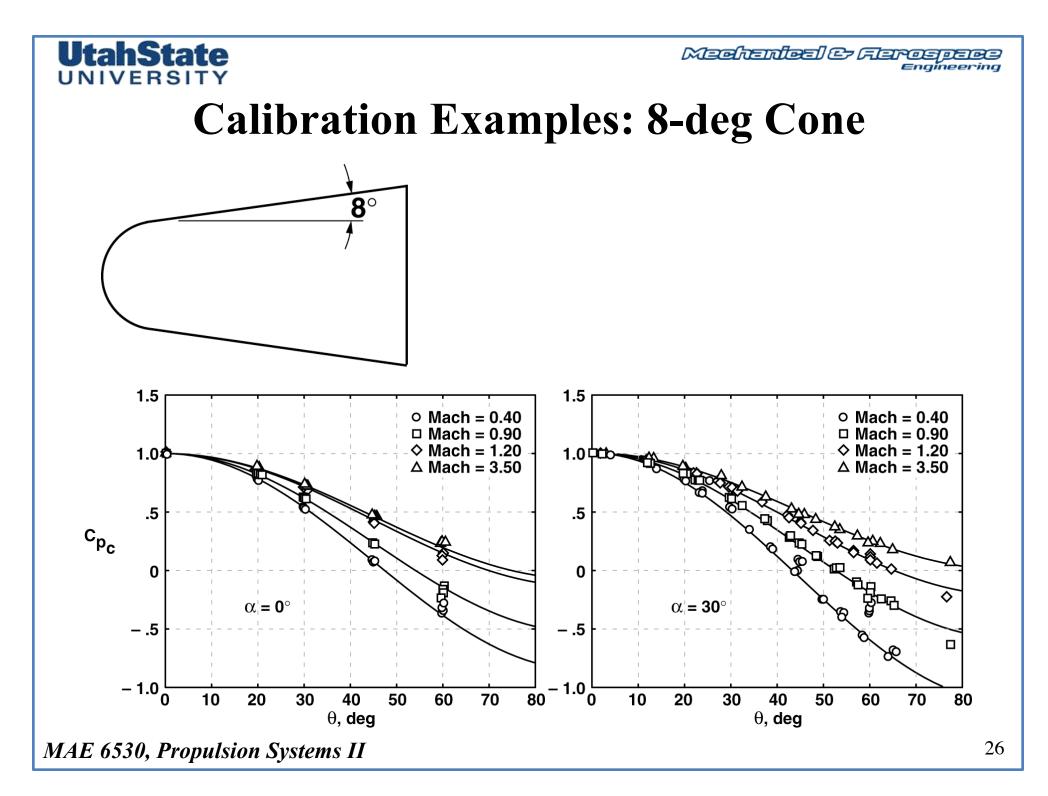
Modified Newtonian Flow, Concluded

• Writing in terms of pressure coefficient

$$\begin{aligned} C_{p}(\Theta) &= \frac{p(\Theta) - p_{\infty}}{\frac{\gamma}{2} \cdot p_{\infty} \cdot M_{\infty}^{2}} = C_{p_{\max}} \cdot \left[\cos^{2}(\Theta) + \varepsilon \cdot \sin^{2}(\Theta)\right] \\ &= C_{p_{\max}} \cdot M_{\infty}^{2} + \varepsilon \cdot \left[\cos^{2}\Theta + \varepsilon \cdot (1 - \cos^{2}\Theta)\right] = C_{p_{\max}} \cdot \left[(1 - \varepsilon) \cdot \cos^{2}\Theta + \varepsilon\right] \\ &= C_{p}(\Theta) = \frac{p(\Theta) - p_{\infty}}{\frac{\gamma}{2} \cdot p_{\infty} \cdot M_{\infty}^{2}} = C_{p_{\max}} \cdot \left[\sin^{2}(\Theta) + \varepsilon \cdot \cos^{2}(\Theta)\right] = C_{p_{\max}} \cdot \left[(1 - \varepsilon) \cdot \sin^{2}(\Theta) + \varepsilon\right] \end{aligned}$$

 "Calibrated Newtonian Flow" Semi-empirical model
 Valid for very high speeds, 3-D
 And 2-D blunt bodies ... accurate
 For both sonic and supersonic regions
 Behind detached shock wave

θ



Medicinated & Flarospece Engineering

UtahState

More Calibration Examples

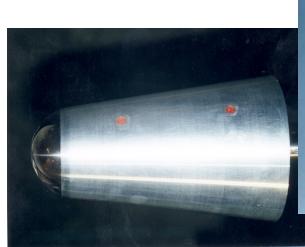
Analytical

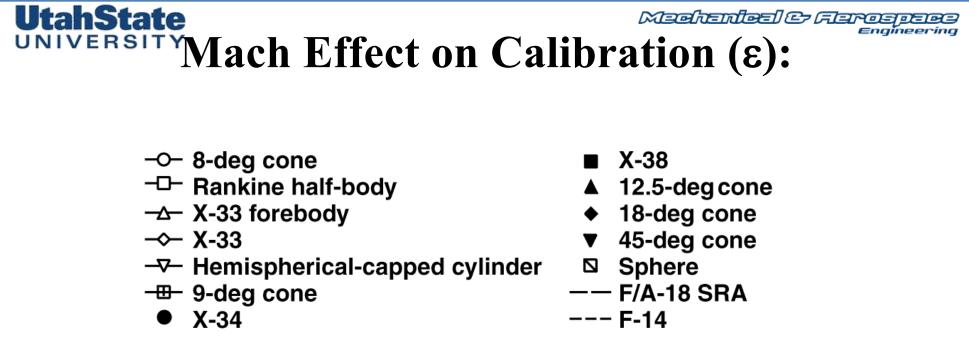
• Potential solutions: sphere, cylinder, arbitrary ellipsoid Wind Tunnel

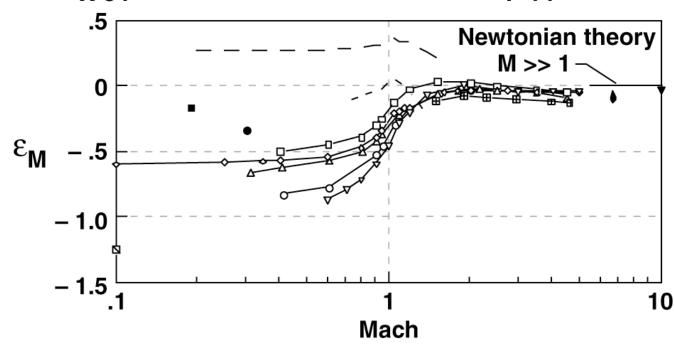
- 8-deg sphere-cone, Rankine half-body, X-33 forebody (M=.3 4.75)
- 9, 12.5, 18, and 45-deg sphere cones
- X-33
- X-34
- X-38
- Sphere

Flight Data

- F/A-18 SRA
- F-14







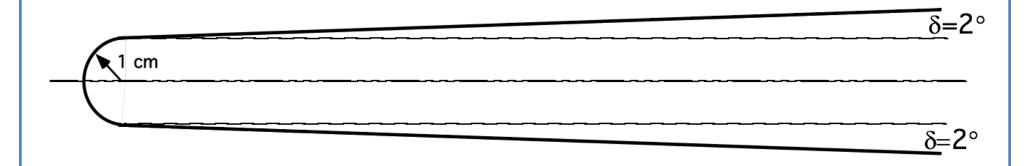
Medicales Ferospece Engineering

Bottom Line

- Even though flow across detached shock wave is extremely complex and is difficult to model theoretically, it turns out that simple engineering models do a good job with the pressure distribution
- Allow the drag due to detached shock wave to be estimated using very simple tools

Homework 7.1, Blunt Edge Drag

Consider a 2° angle (δ) diamond-wedge wing, 2 meter chord (c),
 With A spherically blunted leading edge with a 1 cm radius (R)



• Show that in general, the drag coefficient due to the the blunt leading edge is:

$$C_{D_{LE}} = \int_{-\left(\frac{\pi}{2} - \delta\right)}^{\left(\frac{\pi}{2} - \delta\right)} Cp(\Theta) \cos(\Theta) \frac{R}{c} d\Theta$$

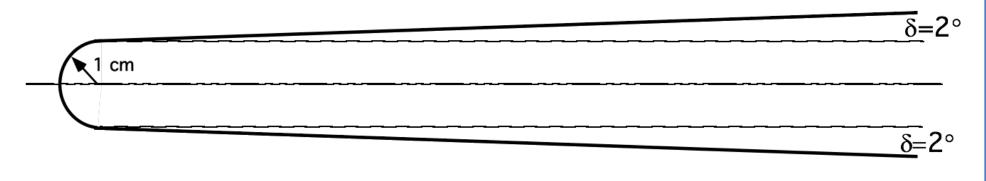
UtahState UNIVERSITY

Medicinies & Flarospers Engineering

Homework 7.1, Blunt Edge Drag (cont'd)

• Use the calibrated Newtonian Model

$$Cp(\Theta) = Cp_{\max} \left[\cos^2(\Theta) + \varepsilon \sin^2(\Theta) \right] = C_{p_{\max}} \cdot \left[(1 - \varepsilon) \cdot \cos^2 \Theta + \varepsilon \right]$$



... calculate the leading edge drag coefficient at M_{∞} = 3.0 ($\epsilon \simeq 0.074$) AND M_{∞} = 10.0 ($\epsilon \simeq 0.00$)

• Compare to wave drag coefficient and skin drag coefficient (referenced to plan area) for the same conditions at 25 km altitude

UtahState

Medicinies Considering

Questions??