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Section 3
Rocket Science Review 102:

Launch Energy Management

Newton's Laws as
Applied to 

"Rocket Science"
... its not just a job ... its an 

adventure

1

Stephen Whitmore
7.2
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RS 101: Summary and Terminology
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•Rocket Thrust Equation

•Specific Impulse  ..                Total                  ….  Instantaneous)

•Rocket Equation •Propellant Mass Budget Equation

Burn

=	

Lmf ≡
Mpropellant

Minitial

=
Mpropellant

M final + Minitial

1− e
−

ΔV
g0 ⋅Isp

⎛

⎝
⎜

⎞

⎠
⎟

• Load  Mass Fraction  



MAE 6530, Propulsion Systems II

Summary and Terminology (2)
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Path	dependent	losses

Available	D V

β =
M

CD ⋅ Aref
→ "Ballistic Coefficient"
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DV for a Vertically 
Accelerating Vehicle
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thustF

M g

ΔVtburn = g0 ⋅ Isp ln 1+ Pmf( )⎡
⎣

⎤
⎦ − g0 ⋅ tburn

→
Pmf =

Mpropellant

M final

tburn =
g0 ⋅ Isp ⋅mpropellamt

Fthrust
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DV for a Vertically Accelerating Vehicle (2)

•Calculate burnout altitude

5

•After a lot of arithmetic!

ΔV

…	ignoring	aerodynamic	drag



MAE 6530, Propulsion Systems II

DV for a Vertically Accelerating Vehicle (3) 

•Collecting terms and simplifying

6

…	ignoring	aerodynamic	drag
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DV for a Vertically Accelerating Vehicle (4) 

•Summary

7

thustF

M g

htburn = g0 ⋅ tburn Isp ⋅ 1−
ln 1+ Pmf( )
Pmf

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−
tburn
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Vtburn = g0 ⋅ Isp ln 1+ Pmf( )⎡
⎣

⎤
⎦ − g0 ⋅ tburn

→
Pmf =

Mpropellant

M final

tburn =
g0 ⋅ Isp ⋅mpropellamt

Fthrust

…	ignoring	aerodynamic	drag
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How High will my Rocket go? (2) 

Solving	for	hapogee

8

M final ⋅ g0 ⋅hapogee

…	ignoring	aerodynamic	drag
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Example Energy Calculation
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“Dry” vehicle mass : 11.2451 kg, Propellant mass: 1.7623 kg
Propellant Isp: 181.49sec, Mean Motor Thrust: 774.475 Newtons

2009 USLI Rocket

2

2

sec
0 sec

sec

sec

1.7236
0.15328

11.2451

9.8067 186.4 1.7236
4.7883

658

propellant kg
mf

final kg

m kg
sp propellamt

burn
thrust kg m

m
P

M

g I M
t

F

= = =

= = =
9.8067 181.49 1.7623⋅ ⋅

774.475
=4.04993 sec

AMW L777 Motor
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Example Energy Calculation (2)
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0
sec0.15328        4.7883propellant sp propellamt

mf burn
final thrust

m g I M
P t

M F
= =

=	431.5	meters

=	219.	5	m/sec

=4.04993 sec=0.156717

9.8067 4.04933 181.49 1 1 0.156717+( )ln
0.156717

−⎝ ⎠
⎛ ⎞ 4.04993

2
−⎝ ⎠

⎛ ⎞⋅

9.8067 181.49 1 0.156717+( )ln( )⋅ 9.8067 4.004993⋅−

( )2

0 02
burnoutmech

apogee burnout
final

VEh h
M g g

= + =

=	2888	meters

219.52

2 9.8067⋅
431.5+
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Compare to Simulation Results

11

We	will	build	this	
simulation	later

Better	than	0.056%

=>	2888	meters

=	219.	5	m/sec

Analytical	Solution
hapogee = 2888.71 m
Vburnout = 219.34 m / sec

Ignoring	drag	for	now!
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Compare to Simulation Results (2)
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( )2

0 02

apogee potential

burnoutmech
burnout

final

h h

VE h
M g g

=

= +

hapogee = 2888.71 m
Vburnout = 219.34 m / sec Ignoring	drag	for	now!

Motor
Burnout
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Compare to Fight Data

13

Why the difference? 
Primarily …. Drag!

2

02potential
Vh h
g

= +

~	15%	error	in	peak	altitude
hapogee = 2888.71 m
Vburnout = 219.34 m / sec
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Compare to Fight Data (2)
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Why the difference? We have ignored Drag!

~	7.2	%	error	in	delivered	apogee	D V	due	to	aerodynamic	drag

( )

( ) ( )
( ) ( )

2

0

%

2 2
2

100

2

apogee mech mech
apogee potential

final final

apogee apogeecalc flight

apogee apogeecalc flight

V E EV g h
M M

V V

V V

= = =

× =
+

=	7.22%

2888.71 2 9.8067⋅ ⋅( ) 0.5 2500 2 9.8067⋅ ⋅( ) 0.5−

2888.71 2 9.8067⋅ ⋅( ) 0.5 2500 2 9.8067⋅ ⋅( ) 0.5+
2
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Drag Losses
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•Lift – acts perpendicular to flight path 
.. Cannot effect energy level of rocket

•Gravity – acts downward (conservative)
… cannot effect energy level of rocket, kinetic energy stored as 

potential energy as rocket climbs

• Apogee primarily influenced by burnout energy and atmospheric 
aerodynamc drag

ΔEnon−
conservative

=
!
Fnon
−conservativepath

∫ ⋅d!s =
!
Fnon
−conservativepath

∫ ⋅ d
!s
dt

⋅dt

!
Fnon
−conservativet

∫ ⋅
!
V ⋅dt ≈

ΔVloss
2

2
⋅M
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How Drag Losses Effect Peak Altitude
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3 2 5

3 3 2

2 2

1 sec 1sec
sec sec

sec

kg m m kg mm kg m m kg m
m

= =:

Check units!

ΔVdrag = 2
DragV
M

dt
0

t

∫ = 2
CDAref

1
2
ρV 2 ⋅V

M
dt

0

t

∫ = ρ ⋅V 3

β
dt

0

t

∫

Δhdrag =
ΔVdrag

2

2 ⋅ g0

= 1
2 ⋅ g0 ⋅β

ρ ⋅V 3 dt
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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How Drag Losses Effect Peak Altitude (2)
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Correct peak altitude estimate

Path	Independent Path	Dependent

“Rule	of	thumb”		~	drag	loss	is	about	5-10%	of	delivered	D V from	motor	

Δhdrag =
1

2 ⋅ g0 ⋅β
ρ ⋅V 3 dt

0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Drag Losses (3)
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Ft/sec Depending	
On	thrust	to-weight
Off	of	the	pad
drag	losses	
can	be	significant
During	motor	burn

As	much	as	12-15%	of
Potential	altitude

…	path	dependent!

Must	simulate	trajectory

Drag = CDAref
1
2
ρV 2 →ΔVdrag = Aref

CDρV
3

m
dt

0

t

∫ = ρV 3

β
dt

0

t

∫
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Drag Coefficient is Configuration Dependent
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Drag Coefficient is Configuration Dependent (2)

20
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Drag Coefficient is Configuration Dependent (3)
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A Recipe for Energy Management
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Conservation of  Energy :
Potential + Kinetic Energy = Constant − Dissipated  Energy

g ⋅hapogee +
V 2

apogee

2
= hburnout +

V 2
burnout

2
−

ρ ⋅V 3

β
dt

tburnout

tapogee

∫

→ hapogee = hburnout +
V 2

burnout

2 ⋅ g
−
V 2

apogee

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟
−

1
g

ρ ⋅V 3

β
dt

tburnout

tapogee

∫

• Velocity and drag are
Very high just after 
motor burnout .. But 
diminish near apogee

• Specific Energy of 
Rocket becomes “more 
constant” with time

.. As drag
Diminishes
Near apogee
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A Recipe for Energy Management (2)
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• Specific Energy of Rocket….

• At motor burn out Drag Energy Dissipation rate is ~3.5 times higher than at 1000 m AGL

• At 1500 m AGL Drag Energy Dissipation is essentially zero .. 
Estimated energy level~ constant   
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A Recipe for Energy Management (3)
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• Potential Altitude as an Estimator of  “Achievable Altitude” Becomes Increasingly
More accurate as Apogee is Approached 

• Use Augmentation Thrust to “Manage Energy” at waypoints of Increasing Altitude
Along Probably trajectory

Thrust 
Augmentation 
Active
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A Recipe for Energy Management (4)
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Thrust 
Augmentation 
Active

Drag decay
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A Recipe for Energy Management (4)
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• First (mostly constant) Augmentation Impulse Boosts Energy to “achievable level”
Once we have calculated energy state (using IMU) … 1706.8 m = 5600 ft 

• Second Augmentation Impulse Boost and  Maintains Energy level at Desired (Target Level)
Eneregy Level using Pulsed-modulation … 1609.32 m = 5280 ft
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A Recipe for Energy Management (5)
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• Lower Augmentation Thrust 
levels allow for more precise 
modulation, but are less 
efficient and must “burn 
longer”
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A Recipe for Energy Management (6)
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• Early Energy Management is More Effective, But less Precise

Thrust 
Augmentation 
Active
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A Recipe for Energy Management (7)
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• Single Waypoint Energy Management Near Apogee

• Insufficient Propellant to hit target
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A Recipe for Energy Management (8)
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• Earlier Implementation of First Waypoint

• Insufficient Accuracy to Hit target
• There will definitely be a Design
“Sweet spot” .. here
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity
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Apogee

• Any Launch Angle not
“Completely Vertical”
Results in  some horizontal 
Component of Horizontal
velocity at Apogee

• However as apogee is 
Approached Horizontal
Velocity Component becomes
~ constant
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (2)
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Apogee

• Compared to total velocity of Vehicle
Horizontal component ~ constant
Very soon after motor burn out

• Vhorwaypoint
~ V

apogee

• 85 Deg Launch Angle

 

Vhor waypoint = Vwaypoint ⋅ cos γ( ) ≈Vapogee

→
γ = flight  path angle

= tan−1
h

Vhor
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hapogee = hwaypoint +
V 2

waypoint

2 ⋅ g
−
V 2

apogee

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟
−
1
g

ρ ⋅V 3

β
dt

twaypoint

tapogee

∫ =

= hwaypoint +
V 2

waypoint

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟ vertical
+

V 2
waypoint

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟ horizontal
−
V 2

apogee

2 ⋅ g

⎛

⎝
⎜

⎞

⎠
⎟ −

1
g

ρ ⋅V 3

β
dt

twaypoint

tapogee

∫

→
V 2

waypoint

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟ horizontal
≈
V 2

apogee

2 ⋅ g

→ hapogee = hwaypoint +
V 2

waypoint

2 ⋅ g
−
V 2

apogee

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟
−
1
g

ρ ⋅V 3

β
dt

twaypo int

tapogee

∫ =

→ hapogee = hwaypoint +
V 2

waypoint

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟ vertical
−
1
g

ρ ⋅V 3

β
dt

twaypo int

tapogee

∫

Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (3)

33

“0” Near
Apogee
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Adjusting Potential Altitude Estimate for 
Effects of Horizontal Velocity (4)
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→ hapogee = hwaypoint +
V 2

waypoint

2 ⋅ g
⎛

⎝⎜
⎞

⎠⎟ vertical
−
1
g

ρ ⋅V 3

β
dt

twaypo int

tapogee

∫

→

hpotential = hwaypoint +

V 2
waypoint ⋅ sin

2 γ( )
2 ⋅ g

 

continuously estimate ...


hpotential( )

t
= h(t ) +

V 2
(t ) ⋅ sin

2 γ (t )( )
2 ⋅ g(t )

at waypoint...we have a very simple control strategy....

...if (hmin ≤ h ≤ hmax ) && h < 

hpotential( )⎡⎣ ⎤⎦

         "thrust on"
... else
         "thrust off"

• Non-optimal strategy
.. But it works pretty well

• Some potential that 
non-linear “bang-bang” or
Dead-band controller may 
Be more propellant efficient

• But                     is a critical
feedback parameter                  

 

hpotential
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Accounting for Drag Losses In Potential 
Altitude
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Ignoring drag …. At any point along the trajectory …  

hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g
since→Vhor = V (t) ⋅ cos γ( ) ≈ constant

But because of drag …. The true apogee will be…  

hapogee = hpotential −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

Drag Loss
Δhdrag



MAE 6530, Propulsion Systems II

Accounting for Drag Losses 
In Potential Altitude 2
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

Pre-schedule Final Target Altitude 
… in this case 1-mile a.g.l.

htarget (t)=

htarget ( final)+ Δhdrag (t) 
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Accounting for Drag Losses 
In Potential Altitude 4
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

Pre-schedule target
Altitude … 1609.35 meters

Low-Energy	Launch
w/	no	thrust	
augmentation

htarget (t)=

htarget ( final)+ Δhdrag (t) 
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Accounting for Drag Losses 
In Potential Altitude 5
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hpotential = h(t) +
V (t) ⋅ sin γ( )

2 ⋅ g

Δhdrag = −
1
2
⋅ ρ ⋅V 2⎛

⎝⎜
⎞
⎠⎟

t

tapogee

∫ ⋅
CD ⋅ Aref
m ⋅ g

⎛
⎝⎜

⎞
⎠⎟
⋅V ⋅dτ

Pre-schedule target
Altitude … at 1609.35 m

Low	Energy	Launch
W/	Thrust	
Augmentation

htarget (t)=

htarget ( final)+ Δhdrag (t) 
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Accounting for Drag Losses 
In Potential Altitude 6

39

Augmentation
thrust
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Energy Management w/ Target Envelope (1)

• Enveloping allows for 
final position error

tolerance while
significantly reducing 
required control activity

htarget (t)=

htarget ( final)+ Δhdrag (t) 
h+target (t)= htarget (t)+δhh

h−target (t)= htarget (t)−δhh

h+target

h−target
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Energy Management w/ Target Envelope (2)

• Use first order decay as a function of altitude for envelope… 

• Integrate from launch to h(t) … 

d
ds

t (0)

t

∫ e
h
τh ⋅δh
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
⋅ds=

δhmax
τh
⋅e

h
τh dh

0

h(t )

∫ → e
h(t )
τh ⋅δh(t)−e

h(0)
τh ⋅δh(0)=

δhmax
τh
⋅ e

h(t )
τh ⋅τh−e

h(0)
τh ⋅τh

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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Energy Management Target Envelope (3)

• Assuming h(0) = 0, 

and Multiply thru by  

à

e
−
h(t )
τh

δh(t)= e
−
h(t )
τh ⋅δh(0)+δhmax ⋅ 1−e

−
h(t )
τh

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

e
h(t )
τh ⋅δh(t)−δh(0)= δhmax ⋅ e

h(t )
τh −1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
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Collected Target Altitude Envelope
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Example Envelopes (1)
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Example Envelopes (2)

• Enveloping allows for 
final position error

tolerance while
significantly reducing 

required control activity
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Energy Management Control Logic

Cbas = thrust

Carp = drag

htarget (t)=

htarget ( final)+ Δhdrag (t) 

Pre-calculated along nominal trajectory
Δhdrag (t)
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Questions??


