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Section 3
Rocket Science Review 103:

Estimating the Launch Vehicle Drag Coefficient

Newton's Laws as
Applied to 

"Rocket Science"
... its not just a job ... its an 

adventure

1

Stephen Whitmore
Newtonian Flow Analysis

Stephen Whitmore
Section 7.3 Supplement
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Fin Leading Edge Drag
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• Stagnation Pressure Coefficient calculated based on Mach number Normal to leading 
edge of fins

• Scaled by leading edge area, W•t
• Assumed fin thickness, t

Cpmax =
qc− p∞
q

=
p∞ ⋅ 1+

γ−1
2
M⊥

2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ
γ−1
− p∞

γ
2
p∞M⊥

2
=
1+ γ−1

2
⋅ M∞ ⋅cosθL.E .( )2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ
γ−1
−1

γ
2
⋅ M∞ ⋅cosθL.E .( )2

CDL .E .( )total
fins

=
Wi ⋅ti
Aref

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

N fins

∑ ⋅ CPmax( )
subsonic{ }

i
=

Wi ⋅ti
Aref

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟i=1

N fins

∑ ⋅
1+ γ−1

2
⋅ M∞ ⋅cosθL.E .( )

i

2⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

γ
γ−1
−1

γ
2
⋅ M∞ ⋅cosθL.E .( )

i

2

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪i

Tends	to	Over-predict	drag,	Model	can	be	refined	using	Newtonian	Flow	Theory



MAE 6530, Propulsion Systems II

Newtonian Flow Analysis
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•Newton had an Often unrecognized original contribution to 
Fluid Mechanics  …. Propositions 34 and 35 in “Principia…”

• “Impact Theory”
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Newtonian Flow Analysis (2)
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Newton Ignores the random 
motion of the molecules and
Considers only the linear or 

translational motion
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Newtonian Flow Analysis (3)
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What happens in Newtonian Model when 

?

But for direct impact … 
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Newtonian Flow Analysis (4)
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Newtonian Flow Analysis (5)
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< 2 always for 
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“Modified Newtonian Flow”
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Lees, Cal Tech, GALCIT 1955.
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Modified Newtonian Flow (2)
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Often convenient to express model in terms of a Polar surface coordinate
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Modified Newtonian Flow (3)
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Expressed in terms of pressure ratio
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Modified Newtonian Flow (4)
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For Newtonian model … Newton 
Ignores the random motion of the 
molecules and Considers only the linear 
or translational motion

• As derived in section 3 Mach number is a measure of the ratio of the fluid
Kinetic energy to the fluid internal energy (direct 

motion To random thermal motion of gas 
molecules)  -- Fundamental Parameter of 

Compressible Flow --

“equivalent to infinite 
Mach number 
assumption”
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Example 3
• Example: Spherically Blunted 2-D wedge, M =10.0, 1-meter R

• Map conditions at three points along shock

Cylindrically 1-cm Radius

1) Far field (g)… “tangent wedge”
2) Sonic Point (d)
3) Stagnation Point (a)
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Example 3 (2)

• Example: Spherically Blunted 2-D wedge, M =10.0, 1-meter R

• For far field point
Draw Shockwave using 
“tangent wedge” as guide

Cylindrically 1-cm Radius
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Example 3 (3)

• Example: Spherically Blunted 2-D wedge, M =10.0, 1-meter R
• Draw Shockwave using  “tangent wedge” as guide

• corresponding to 10 deg wedge angle at Mach 10.0 • Assume =1.4

Cylindrically 1-cm Radius

1 cmTangent wedge

6.075 From oblique 
shock wave theory

14.4266 deg
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Example 3: Sonic Point Surface Conditions 
behind  detached shock wave: (5)

Sonic Point 
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Example 3 (6)

• Compute Standoff Distance 

= = 0.4044 cm

• Compute Sonic Point on Shock

= 67.335 deg.
• Compute Sonic Point on Surface

44.428 deg.

See	for	derivation:	http://mae-nas.eng.usu.edu/MAE_5420_Web/section8/section8.3.pdf
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Example 3 (cont’d)

44.4285 deg.

0.4044 cm

Mach = 1067.35 deg.

64.16
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Surface Conditions behind 
detached shock wave: stagnation point (cont’d)

• Treat as normal shockwave

= 129.21

• M  =10.0
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Plot Conditions along detached shock
summary

19

Point 
on 

Shock

beta, 
deg

theta, 
deg

90o-

theta

a            90o 90o 0o 129.21

d 67.34o 44.43o 45.57o 64.16

g 14.43o 10o 80o 6.075

10.0
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Surface Conditions behind 
detached shock wave: Mach 10.0

Good agreement at 
High Mach numbers!



MAE 6530, Propulsion Systems II

Repeat Oblique Shock Calculations at 
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Point 
on 

Shock

beta, 
deg

theta, 
deg

90o-

theta

a            90o 90o 0o 12.06

d 63.77o 34.01o 55.99o 5.18

g 27.38o 10o 80o 2.05
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Surface Conditions behind 
detached shock wave: Mach 3.0

Comparison is not nearly 
as good? Why?
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Surface Conditions behind 
detached shock wave: Mach 3

= 0.074

= 0.00

“calibrated” flow
With curve fit
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Surface Conditions behind 
detached shock wave: Surface plot

• In limit as M->infinity Modified Newtonian flow model is 
A good descriptor of the local surface pressures

• At lower Mach numbers we include a “calibration” term
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Modified Newtonian Flow, Concluded

• Writing in terms of pressure coefficient

• “Calibrated Newtonian Flow”
Semi-empirical model

Valid for very high speeds, 3-D
And 2-D blunt bodies … accurate

For both sonic and supersonic regions
Behind detached shock wave

Cpmax ⋅ cos
2Θ+ε ⋅ 1−cos2Θ( )⎡

⎣⎢
⎤
⎦⎥
=Cpmax ⋅ 1−ε( )⋅cos2Θ+ε⎡

⎣⎢
⎤
⎦⎥

=Cpmax ⋅ 1−ε( )⋅sin2 θ( )+ε⎡
⎣⎢

⎤
⎦⎥
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Calibration Examples: 8-deg Cone
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More Calibration Examples

• 8-deg sphere-cone, Rankine half-body, X-33 forebody (M=.3 - 4.75)
• 9, 12.5, 18, and 45-deg sphere cones
• X-33
• X-34
• X-38
• Sphere

Analytical
• Potential solutions: sphere, cylinder, arbitrary ellipsoid

Wind Tunnel

Flight Data
• F/A-18 SRA
• F-14
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Mach Effect on Calibration (e):
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Bottom Line

• Even though flow across detached shock wave is
extremely complex and is difficult to model
theoretically, it turns out that simple engineering models
do a good job with the pressure distribution

• Allow the drag due to detached shock wave to be
estimated  using very simple tools
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Homework 7.1, Blunt Edge Drag
• Consider a 2° angle (d) diamond-wedge wing, 2 meter chord (c),  

With A spherically blunted leading edge with a 1 cm radius (R)

• Show that in general, the drag coefficient due to the
the blunt leading edge is:
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Homework 7.1, Blunt Edge Drag (cont’d)
• Use the calibrated Newtonian Model

… calculate the leading edge drag coefficient
at M¥= 3.0 (e~0.074) AND M¥= 10.0 (e~0.00)

• Compare to wave drag coefficient and 
skin drag coefficient (referenced to plan area) 
for the same conditions at 25 km altitude

=Cpmax ⋅ 1−ε( )⋅cos2Θ+ε⎡
⎣⎢

⎤
⎦⎥
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Questions??


