Medienteel & Flarcepees Engineering

UNIVERSITY

Homework 1.2

Assignment 1.2 Date Assigned: Wednesday September 7, 2022 Date Due: Mondy September 20, 2021

Title: 2-D *Method of Characteristics* (M.O.C.) Grid Solver Development Num. of Points: 10

- Code and Verify subroutines or scripts for
 - Initial Data Line along Expansion Section Wall
 - Internal Flow Unit Process
 - Centerline Intercept Unit Process (C- characteristic line)
 - Wall Intercept Unit Process (C+ characteristic line)
 - Minimum Length Nozzle Maximum Turning Angle
- Link and Sequence Unit Process Modules to Calculate M.O.C Grid

Mediantel & Flarcepees Engineering

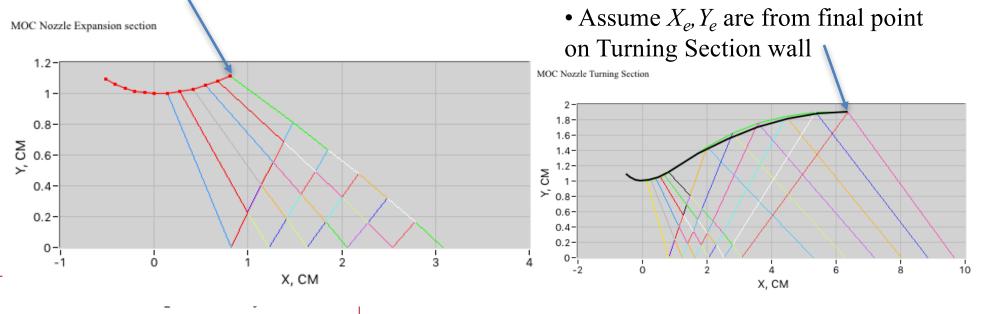
UNIVERSITY

Homework 1.2 (2)

Solve Problem 11.1 in Anderson, page 429. (See Section 1.1 Notes for Example) ... Minimum Length Nozzle with Maximum Turning Angle -- infinitesimal expansion section

 $... M_{exit} = 2.0$ $... D^* = 2.0 \text{ cm}$ $... Assume \gamma = 1.4$ $... Repeat with \gamma = 1.2$ Solve Problem 11.2 in Anderson, Page 430 but with Finite expansion section radius of Curvature equal to 1.5 x throat radius $... M_{exit} = 2.0$ $... D^* = 2.0 \text{ cm}$ $... Assume \gamma = 1.4$ $... Repeat with \gamma = 1.2$ for all parts
Plot nozzle half-contours
Plot nozzle Mach number profile along upper wall and along centerline

Compare to Mach number profile calculated using A/A* equation


Medienteel & Flarespere

UtahState

Homework 1.2 (3)

For each of the 4 Nozzle Contours above \rightarrow

- Use the approximate "bell-curve" mapping technique to solve for P, Q, S, and T of the Parabolic Contour
- Plot Contours against the derived M.O.C contours, compare shapes
- Use M.O.C. values for θ_{max} , Nozzle length L_N , and Radius of Curvature R_c of the expansion section for these calculations
- Be sure to show Calculations for X_n , Y_n , P, Q, S, T, etc.
- Assume Nozzle exit angle is zero for each case
- Use "X" data from turning section to create Bell curve
- Assume X_n, Y_n are from final point on wall for *Expansion Section*

Medienteel & Flarospece Engineering

Solution 1.2, part 1

• Minimum Length Nozzle ... $\gamma = 1.4$

$$M_{exit} = 2.0 \rightarrow \mathcal{V}(M_{exit}) = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \left\{ \sqrt{\frac{\gamma - 1}{\gamma + 1}} (2.0^2 - 1) \right\} - \tan^{-1} \sqrt{2.0^2 - 1} = \frac{180}{\pi} \left(\left(\frac{1.4 + 1}{1.4 - 1} \right)^{0.5} \operatorname{atan} \left(\left(\left(\frac{1.4 - 1}{1.4 + 1} \right) (2.0^2 - 1) \right)^{0.5} \right) - \operatorname{atan} \left(\left((2.0^2 - 1) \right)^{0.5} \right) \right)$$

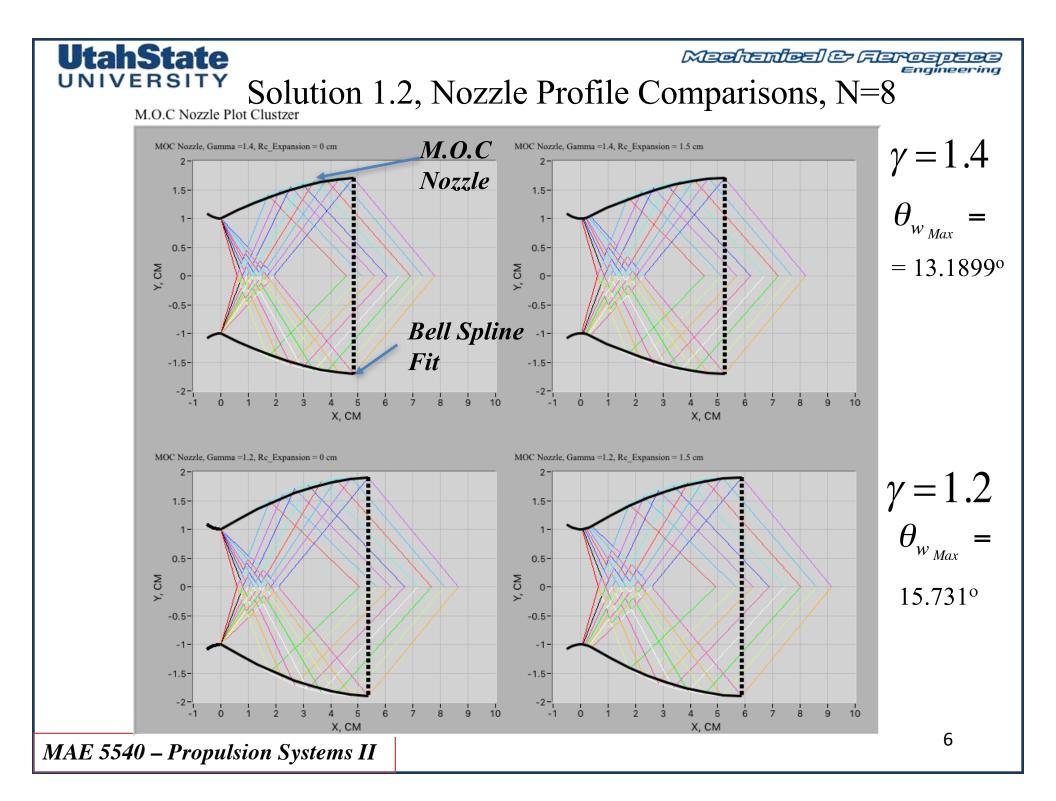
 $= 26.3798^{\circ}$

UtahState

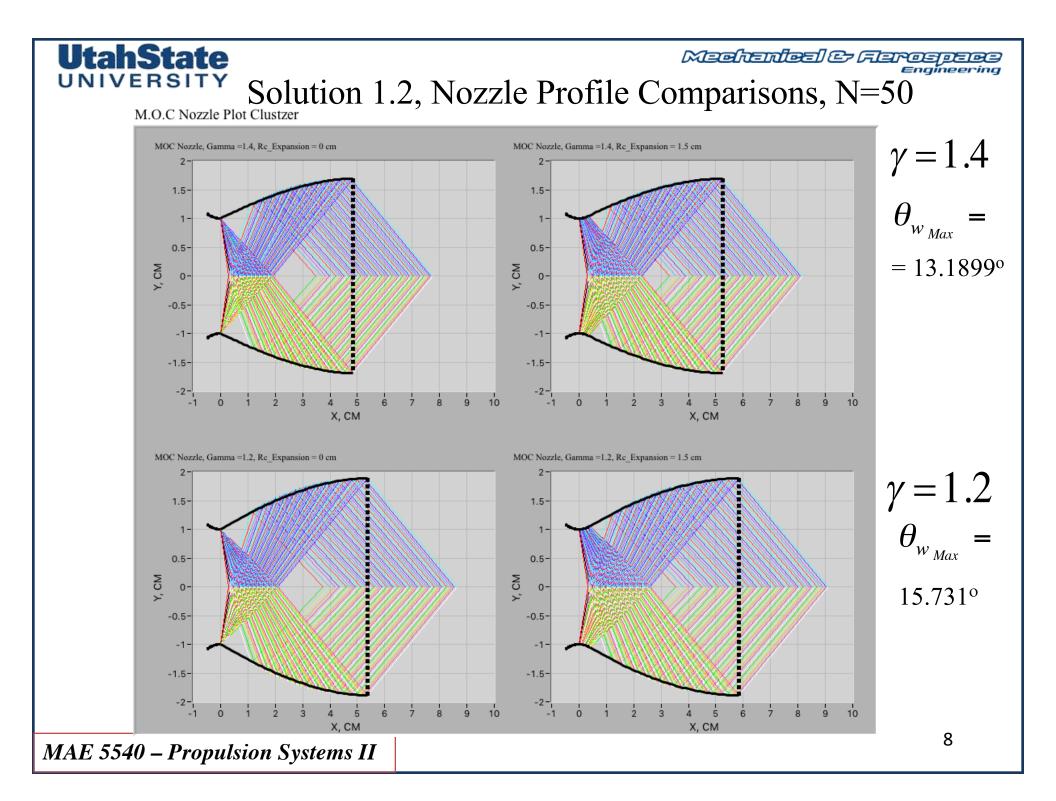
$$\theta_{w_{Max}} = \frac{V_{exit}}{2} = 13.1899^{\circ}$$
 $M_{exit} = 2.0 \rightarrow \frac{A_{exit}}{A^*} = 1.6875$

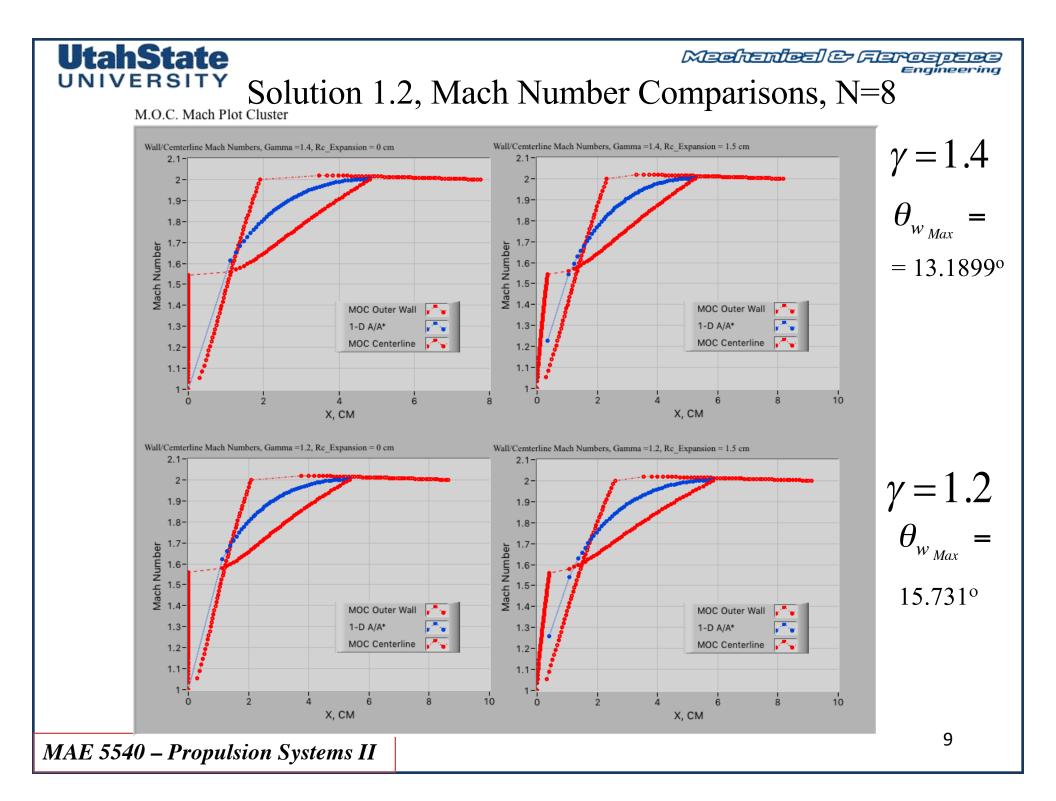
MAE 5540 – Propulsion Systems II

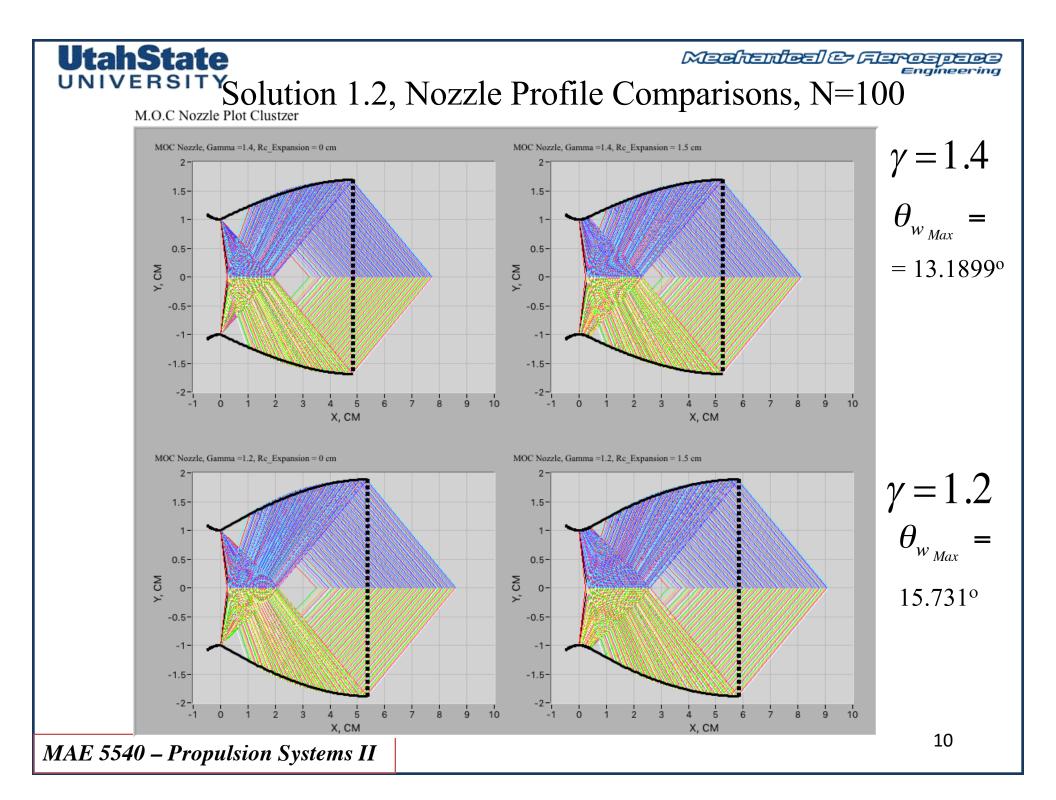
UtahState UNIVERSITY Solution 1.2, part 1 (4)

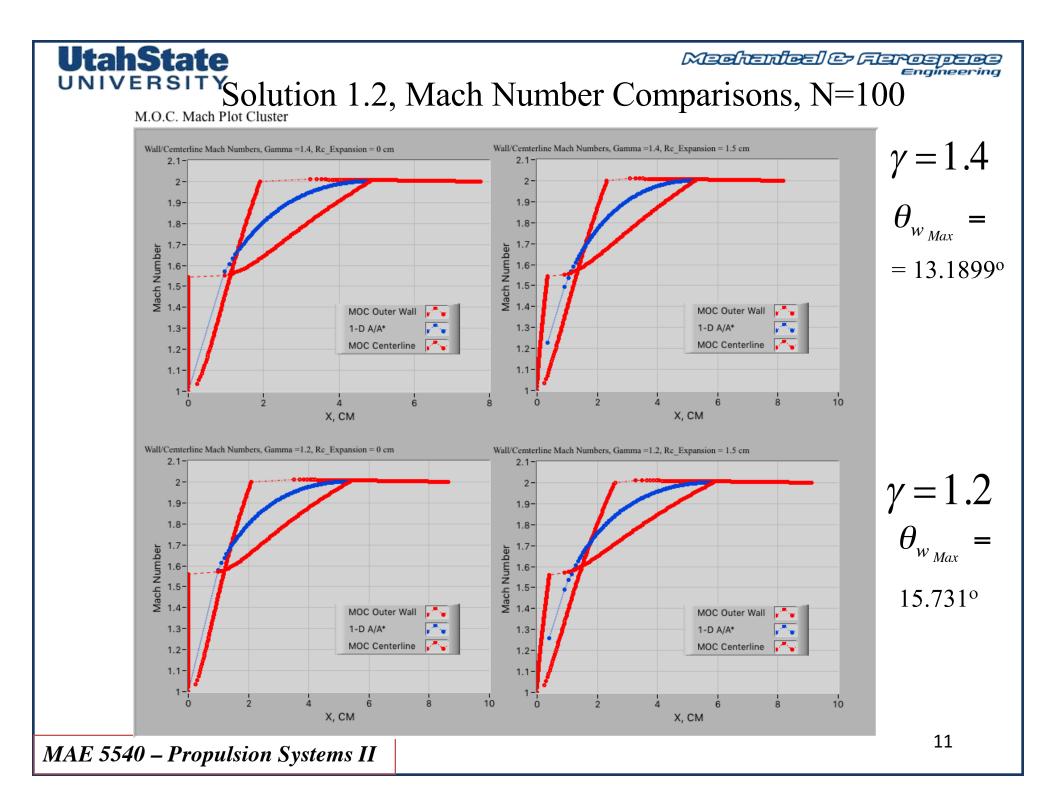

• Minimum Length Nozzle ... $\gamma = 1.2$

• Let N=6


$$M_{exit} = 2.0 \rightarrow \mathcal{V}(M_{exit}) = \sqrt{\frac{\gamma + 1}{\gamma - 1}} \tan^{-1} \left\{ \sqrt{\frac{\gamma - 1}{\gamma + 1}} (2.0^2 - 1) \right\} - \tan^{-1} \sqrt{2.0^2 - 1} =$$


= 31.46°


$$\theta_{w_{Max}} = \frac{v_{exit}}{2} = 15.731^{\circ} \qquad M_{exit} = 2.0 \rightarrow \frac{A_{exit}}{A^*} = 1.884$$



UtahState UNIVERSITY

Medienteel & Flarosperes Engineering

Data Summary

Output Array, N=8 A/A* Rc expansion, cm Gamma Theta Max X _N Y _N M _N Xexit Yexit Mexit wall Mexit CL Mexit (A/A*) P S Q T													Т			
0	1.6875	0	1.4	13.1899	0	1	1.54353	4.84856	1.69773	1.99998	2.11321	2.00724	0.631005	-5.04437	-6.35882	40.4346
	1.6875	1.5	1.4	13.1899	0.342269	1.03957	1.54353	5.25734	1.69796	1.99998	2.10017	2.0074	0.9359	-22.0851	-15.7405	247.763
	1.884	0	1.2	15.7306	0	1	1.56078	5.37381	1.89541	2.00014	2.11493	2.00577	0.90992	-16.2131	-12.9034	166.498
	1.884	1.5	1.2	15.7306	0.406682	1.05618	1.56078	5.86925	1.89616	2.00014	2.10071	2.00614	1.67437	-137.533	-49.3764	2438.03
	Output Array, 1 A/A*	N=50 Rc expansion, cr	n Gamma	Theta Max	Xn	YN	Mn	Xexit	Y exit	Mexit wall	Mexit CL	Mexit (A/A*)	Р	S	Q	Т
0	1.6875	0	1.4	13.1899	0	1	1.54353	4.83521	1.6901	1.99993	2.01469	2.00185	0.65474	-5.81499	-6.91639	47.8364
	1.6875	1.5	1.4	13.1899	0.342269	1.03957	1.54353	5.2439	1.69012	1.99993	2.01303	2.00186	1.00083	-27.856	-18.1716	330.205
	1.884	0	1.2	15.7306	0	1	1.56078	5.36333	1.88718	2.00005	2.01496	2.00172	0.947764	-18.8087	-14.1186	199.336
	1.884	1.5	1.2	15.7306	0.406682	1.05618	1.56078	5.85614	1.88726	2.00005	2.01318	2.00176	1.84034	-187.336	-60.095	3611.41
	Output Array, 1 A/A* 1.6875 1.6875	Rc expansion, cr	n Gamma	Theta Max 13.1899 13.1899	X _N 0 0.342269	Y _N 1 1.03957	M _N 1.54353 1.54353	Xexit 4.833 5.24173	Yexit 1.68894 1.68895	Mexit wall	Mexit CL 2.00722 2.00641	Mexit (A/A*) 2.00103 2.00103	P 0.658445 1.01116	S -5.94143 -28.8549	Q -7.00503 -18.573	T 49.0705 344.956
¢.		0	1.4			1.03957										
	1.884	1.5	1.2	15.7306 15.7306	0	1.05618	1.56078 1.56078	5.36086 5.85347	1.8858	1.99996	2.00744	2.00104	0.953745	-19.2388	-14.313	204.862 3839.73
	,			,									,	,		
													12			

MAE 5540 – Propulsion Systems II