UNIVERSITY

• Boeing Delta II Rocket...Stage 1

- Nozzle Throat Diameter: 40.175 cm

_____ Medicinited & Flarcepel Engineer

- Nozzle Expansion Ratio: 15.25:1
- Conical Nozzle, 30.5 deg exit angle
- Combustion Properties: (RS-27A Rocketdyne Engine)
 - Lox/Kerosene, Mixture Ratio: 2.24:1
 - Chamber Pressure (P₀): 5160 kPa
 - Combustion temperature (T₀): 3455 K
 - $-\gamma = 1.2220$
 - $-M_W = 21.28 \ kg/kg-mol$
 - Propellant Mass: 97.08 Metric Tons
 - Stage 1 Launch Mass: 101.8 Metric Tons

Madhanileal & Flarceperes Engineering

UNIVERSITY

Part 1, Conventional Nozzle Contour Analysis

- Plot Nozzle Contours for:
 - Conventional RS-27A Nozzle (30.5 deg conical exit)
 - Minimum Length Conical Nozzle (no factor of safety)
 - o Bell Nozzle, 2/3rd Maximum Turning Angle Safety factor
 - Bell exit angle = 0 deg, $L_{Nozzle} = 150$ cm
 - Use "P, S, Q, T" Bell fit for expansion section
 - Nozzle Throat Diameter: 40.175 cm
 - Nozzle Expansion Ratio: 15.25:1

Assume for all Conventional Nozzles \rightarrow Contraction/Expansion section has Rc = 0.75•D_{throat}

UtahState UNIVERSITY

Part 2, Aerospike Contour Analysis

For Aerospike Nozzle use Sonic Throat section, assume axisymmetric design, full spike length ... For Aerospike Nozzle use Sonic Throat section, assume axi-symmetric design, full spike length .. Design a Conical *aerospike nozzle replacement* for the RS-27A Nozzle

... ii) Calculate and plot full-3-D design spike contour,

- Nozzle Throat Diameter: 40.175 cm

- Design Expansion Ratio: 15.25:1

Re-derive the Conical (3-D) Aerospike Contour Design Rules (*Slide 31*) for a two dimensional (Linear) Nozzle (show derivation)

Compare 2,-D, 3-D Spike Contours with RS-27 A Nozzle Contour

UtahState

Medicantes Constants

Part 2, Aerospike Contour Analysis (3) Example Spike Plots

Calculate design altitude for this expansion ratio (15.25:1) plot design mach number and pressure profile along spike, assume expansion ratio and chamber properties identical to RS-27A

MAE 5540 - Propulsion Systems

ItahState

UNIVERSIT

Medicilles Consistence Engineering

Part 2, Aerospike Contour Analysis (4)

Plot Characteristic Lines from Throat/Cowl Expansion and Show their Intersection with Spike Surface

MAE 5540 - Propulsion Systems

hState

IVERSI

MAE 5540 - Propulsion Systems

UtahState UNIVERSITY Part 3, Truncated Aerospike

Truncate Spike Such that pressure at truncation Point equals $= P_{sl}$ (101.325 kPa)

MAE 6530 - Propulsion Systems II

Example Calculate Launch Thrust

UtahState

$$T_{spike} = T_{throat} + T_{ramp} + T_{base} =$$
172.156 + 808.459 - 37.9658 = 942.649 kNt

Medicinies & Flarees Engine

UNIVERSITY Part 4, Performance Comparisons

Plot delivered Thrust and I_{sp} as a function of altitude from sea level RS-27a design altitude to 100 km altitude

- •Actual RS-27A Nozzle
- •Minimum Length Conical Nozzle
- •Bell Nozzle
- •Full 3-D Aerospike Nozzle (design Altitude to 100 km)
- •*Truncated Aerospike*, $P_{truncation} = 101.325 kPa$

UtahState UNIVERSITY Part 4, Performance Comparisons

Thrust Comparisons

UtahState UNIVERSITY Part 5 Nozzle Comparison Summary								
Nozzle Config.	Launch Thrust, kNt	Vacuum Thrust, kN	Design Altitude Thrust, kNt	Launch I _{sp} , sec	Vacuu m I _{sp} , sec	Design Isp, sec	Length, cm	Design Thrust/Lengt h, kNt/cm
RS-27A Minimum Length Nozzle	844.67	1040.55	973.29	234.39	288.75	270.08	83.05	11.721
RS-27A Normal Nozzle	844.67	1085.95	1018.69	246.99	301.35	282.68	107.29	9.495
RS-27A Bell Nozzle	965.80	1161.68	1094.42	268.00	322.36	303.69	150	7.296
RS-27A Full Aerospike Nozzle, 77.168%		1161.65	1094.42		322.33	303.67	267.6	4.090
RS-27A Truncated Aerospike Nozzle	942.85	1138.75	1071.48	261.59	315.98	297.31	63.15	16.967