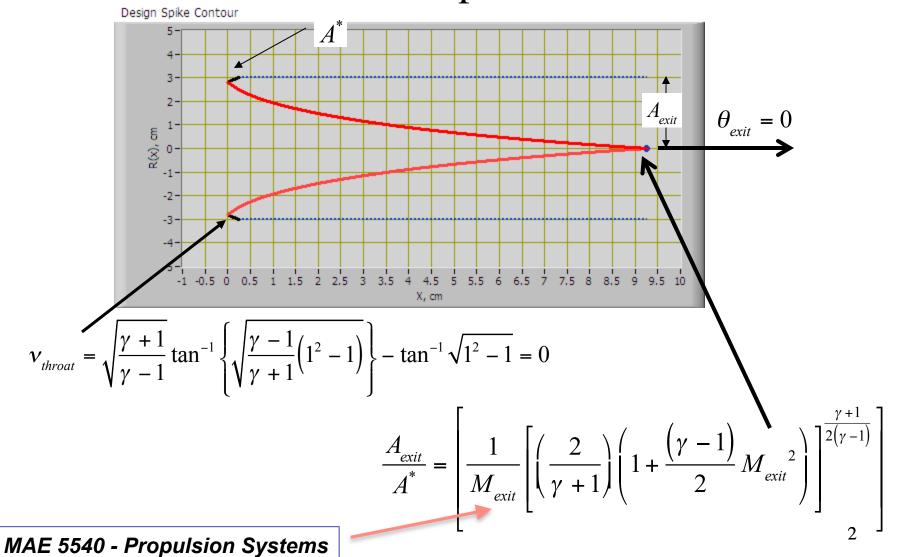


Homework 1.3, Part 2 Solution

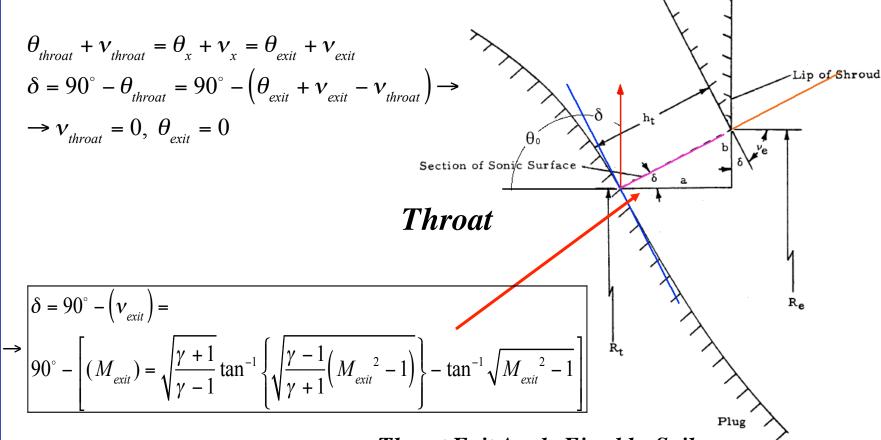
1) Re-derive the Conical (3-D)
Aerospike Contour Design
Rules (*Slide 31*) for a two
dimensional (Linear) Nozzle

2-D Nozzle Contour Design, Choked throat

Apply Method of Characteristics to Aerospike Nozzle (1)

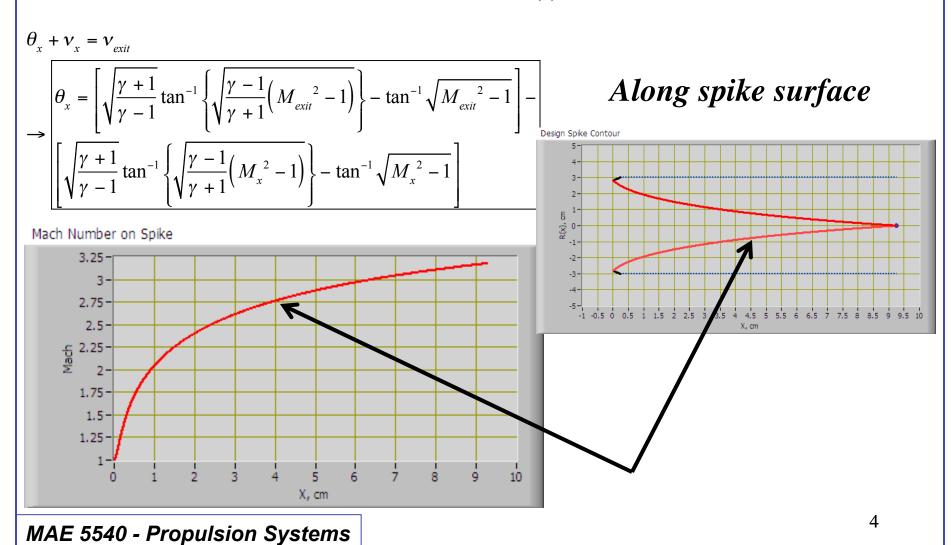


Apply Method of Characteristics to Aerospike Nozzle (2)



Throat Exit Angle Fixed by Spike Design expansion ratio

Apply Method of Characteristics to Aerospike Nozzle (3)



Medicines & Ferences Engineering

At position X

2-D
$$\phi_{x} = \theta_{x} + \mu_{x}$$

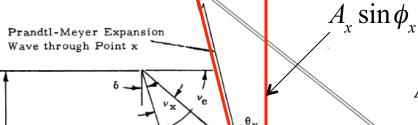
$$Plug Geometry \qquad \theta_{x} = v_{exit} - v_{x}$$

$$\phi_{x} = v_{exit} - v_{x}$$

$$\phi_{x} = v_{exit} - v_{x} + \mu_{x}$$

$$A_{x} \cdot \sin \phi_{x} = \left(\mathbf{R}_{exit} - R_{x} \right) \cdot W_{spike} \rightarrow$$

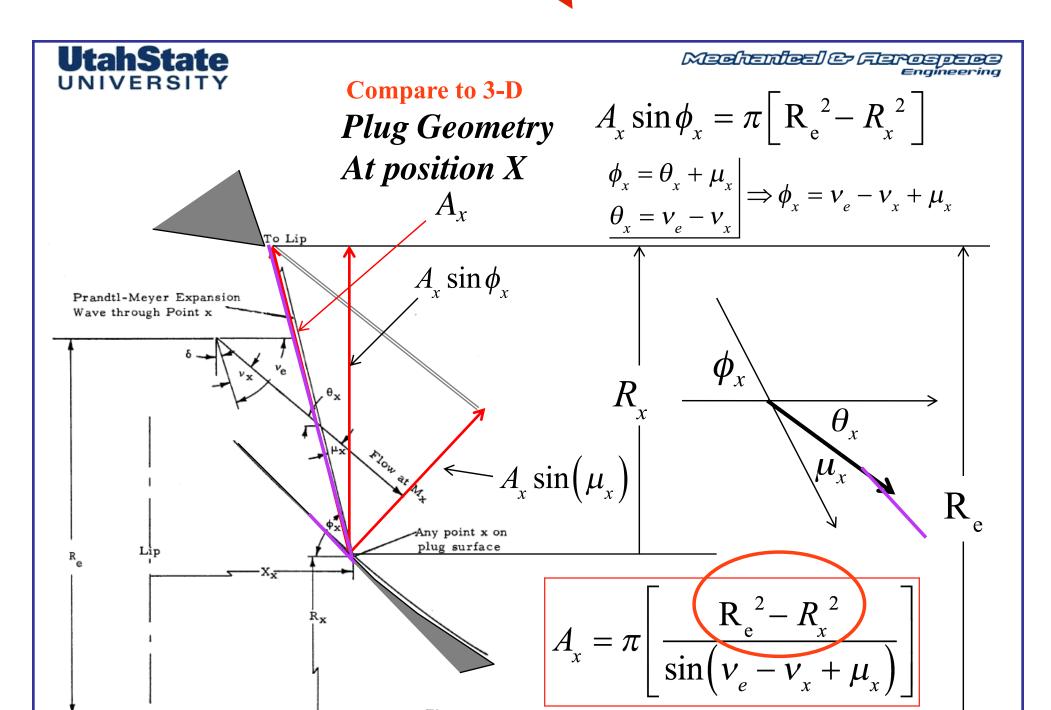
$$A_{x} = \frac{\left(\mathbf{R}_{exit} - R_{x}\right) \cdot W_{spike}}{\sin \phi_{x}} = \frac{\left(\mathbf{R}_{exit} - R_{x}\right) \cdot W_{spike}}{\sin \left(\mathbf{v}_{exit} - \mathbf{v}_{x} + \mu_{x}\right)}$$



$$A_{x} = \frac{\left(R_{exit} - R_{x}\right) \cdot W_{spike}}{\sin \phi_{x}} = \frac{\left(R_{exit} - R_{x}\right) \cdot W_{spike}}{\sin \left(v_{exit} - v_{x} + \mu_{x}\right)}$$

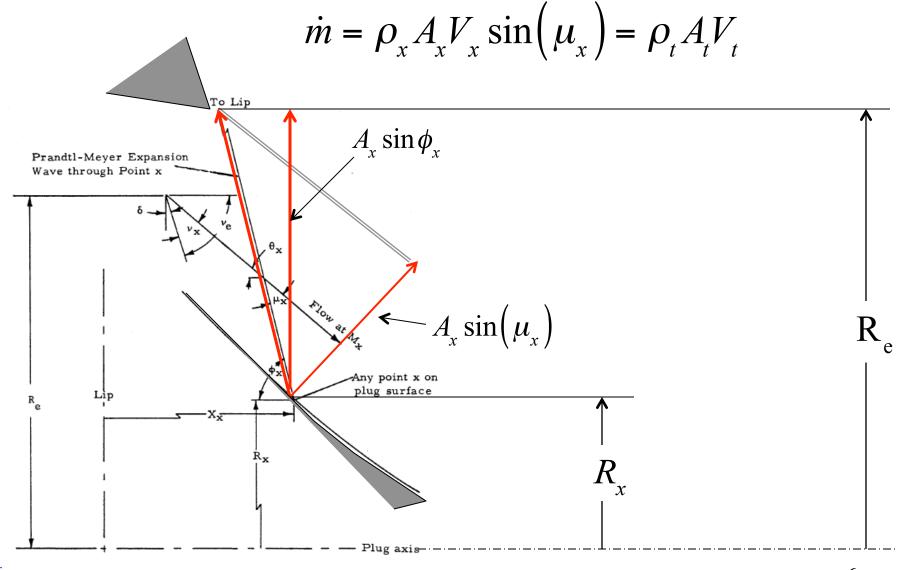
$$-A_x \sin(\mu_x)$$

Any point x on plug surface



6

Apply Continuity equation



Apply Method of Characteristics to Aerospike Nozzle (5)

• Solving for A_x

Solve for
$$A_x \to A_x = \frac{\rho_t \cdot A_t}{\rho_x \cdot \frac{V_x}{V_t} \cdot \sin \mu_x} = \frac{P_t \cdot A_t}{P_x \sqrt{\frac{T_t}{T_x}} \cdot \frac{\sqrt{T_t}}{V_t} \cdot \frac{V_x}{\sqrt{T_x}} \cdot \sin \mu_x} = \frac{P_t \cdot A_t}{P_x \sqrt{\frac{T_t}{T_x}} \cdot \frac{M_x}{M_t} \cdot \sin \mu_x}$$

• Divide by throat area

$$\Rightarrow \frac{A_{x}}{A_{t}} = \frac{P_{t}}{P_{x}\sqrt{\frac{T_{t}}{T_{x}}} \cdot \frac{M_{x}}{M_{t}} \cdot \sin \mu_{x}} = \frac{\frac{P_{0}}{P_{x}} \cdot \sqrt{\frac{T_{x}}{T_{0}}}}{\frac{P_{0}}{P_{t}}\sqrt{\frac{T_{t}}{T_{0}}} \cdot \frac{M_{x}}{M_{t}} \cdot \sin \mu_{x}} = \frac{\left(1 + \frac{\gamma - 1}{2} \cdot M_{x}^{2}\right)^{\frac{\gamma}{\gamma - 1}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}}} \cdot \sqrt{\frac{1}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma}{\gamma - 1}}}}}$$

Apply Method of Characteristics to Aerospike Nozzle (6)

Simplifying

$$\frac{A_{x}}{A_{t}} = \frac{\left(1 + \frac{\gamma - 1}{2} \cdot M_{x}^{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{x}}}{\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{x}}} = \frac{\left[\left(\frac{2}{\gamma + 1}\right)\left(1 + \frac{\gamma - 1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{x}}}{\left[\left(\frac{2}{\gamma + 1}\right)\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)\right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{t}} \cdot \sin \mu_{x}}$$

$$\frac{A_{t}}{A^{*}} = \left[\left(\frac{2}{\gamma + 1}\right)\left(1 + \frac{\gamma - 1}{2} \cdot M_{t}^{2}\right)\right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{x}}}{\frac{A_{t}}{A^{*}}} \cdot \frac{A_{x}}{A_{t}} = \frac{\left[\left(\frac{2}{\gamma + 1}\right)\left(1 + \frac{\gamma - 1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \cdot \frac{1}{M_{x}}}{\frac{A_{t}}{A^{*}}} \cdot \sin \mu_{x}$$

Apply Method of Characteristics to Aerospike Nozzle (7)

Simplifying again

$$Simplify \rightarrow A_{x} = A^{*} \frac{\left[\left(\frac{2}{\gamma+1}\right)\left(1 + \frac{\gamma-1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma+1}{2(\gamma-1)}} \cdot \frac{1}{M_{x}}}{\sin \mu_{x}} \rightarrow \sin \mu_{x} = \frac{1}{M_{x}}$$

$$A_{x} = A^{*} \left[\left(\frac{2}{\gamma+1}\right)\left(1 + \frac{\gamma-1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma+1}{2(\gamma-1)}} = \frac{A_{exit}}{\varepsilon} \left[\left(\frac{2}{\gamma+1}\right)\left(1 + \frac{\gamma-1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma+1}{2(\gamma-1)}}$$

$$A_{exit} = R_{exit} \cdot W_{spike} \rightarrow A_{x} = \frac{R_{exit} \cdot W_{spike}}{\varepsilon} \left[\left(\frac{2}{\gamma+1}\right)\left(1 + \frac{\gamma-1}{2} \cdot M_{x}^{2}\right)\right]^{\frac{\gamma+1}{2(\gamma-1)}}$$

Apply Method of Characteristics to Aerospike Nozzle (8)

• Solve for R_x

from earlier
$$\Rightarrow A_x = \frac{\left(R_{exit} - R_x\right) \cdot W_{spike}}{\sin\left(v_{exit} - v_x + \mu_x\right)} = \frac{R_{exit} \cdot W_{spike}}{\varepsilon} \left[\left(\frac{2}{\gamma + 1}\right)\left(1 + \frac{\gamma - 1}{2} \cdot M_x^2\right)\right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Solve for
$$R_x \to \left(1 - \frac{R_x}{R_{exit}}\right) = \frac{\sin(\nu_{exit} - \nu_x + \mu_x)}{\varepsilon} \left[\left(\frac{2}{\gamma + 1}\right) \left(1 + \frac{\gamma - 1}{2} \cdot M_x^2\right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\left| \frac{R_x}{R_{exit}} = 1 - \frac{\sin(\nu_{exit} - \nu_x + \mu_x)}{\varepsilon} \left[\left(\frac{2}{\gamma + 1} \right) \left(1 + \frac{\gamma - 1}{2} \cdot M_x^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \right|$$

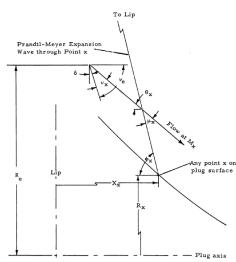
Apply Method of Characteristics to Aerospike Nozzle (9)

• and since by geometry of the surface

Surface geometry
$$\rightarrow \tan \phi_x = \frac{R_{exit} - R_x}{X_x} \rightarrow from \ earlier \rightarrow \phi_x = v_{exit} - v_x + \mu_x$$

2 – D Spike Contour Lines

$$\begin{bmatrix} X_x = \frac{R_{exit} - R_x}{\tan(v_{exit} - v_x + \mu_x)} \\ R_x = R_{exit} \left(1 - \frac{\sin(v_{exit} - v_x + \mu_x)}{\varepsilon} \left[\left(\frac{2}{\gamma + 1} \right) \left(1 + \frac{\gamma - 1}{2} \cdot M_x^2 \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \right) \\ \sin \mu_x = \frac{1}{M_x} \qquad \tan \phi_x = \frac{R_{exit} - R_x}{X_x} \qquad \phi_x = v_{exit} - v_x + \mu_x \end{bmatrix}$$



2-D Nozzle Algorithm

• These equations define the isentropic spike profile

Compare to 3-D Nozzle Algorithm Aerospike Nozzle

$$\tan \phi_x = \frac{R_e - R_x}{X_x} \rightarrow \phi_x = v_e - v_x + \mu_x \rightarrow$$

$$X_{x} = \frac{R_{exit} - R_{x}}{\tan(v_{e} - v_{x} + \mu_{x})}$$

$$R_{x} = R_{exit} \sqrt{1 - \frac{\sin(\nu_{e} - \nu_{x} + \mu_{x})}{\varepsilon}} \left[\left(\frac{2}{\gamma + 1} \right) \cdot \left(1 + \frac{\gamma - 1}{2} M_{x}^{2} \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\sin(\mu_x) = \frac{1}{M_x}$$

Note "Square Root" Sign

Compare 2-D and 3-D Spike Contours

Surface geometry
$$\rightarrow \tan \phi_x = \frac{R_{exit} - R_x}{X_x} \rightarrow from \ earlier \rightarrow \phi_x = v_{exit} - v_x + \mu_x$$

2 – D Spike Contour Lines

 $X_{x} = \frac{R_{exit} - R_{x}}{\tan(v_{exit} - v_{x} + \mu_{x})}$ 2-D Nozzle

Algorithm

$$R_{x} = \frac{e^{xxt}}{\tan(v_{exit} - v_{x} + \mu_{x})}$$

$$R_{x} = R_{exit} \left(1 - \frac{\sin(v_{exit} - v_{x} + \mu_{x})}{\varepsilon} \left[\left(\frac{2}{\gamma + 1}\right) \left(1 + \frac{\gamma - 1}{2} \cdot M_{x}^{2}\right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}} \right)$$

$$\tan \phi_x = \frac{R_e - R_x}{X_x} \rightarrow \phi_x = v_e - v_x + \mu_x \rightarrow$$

3-D Nozzle

Algorithm

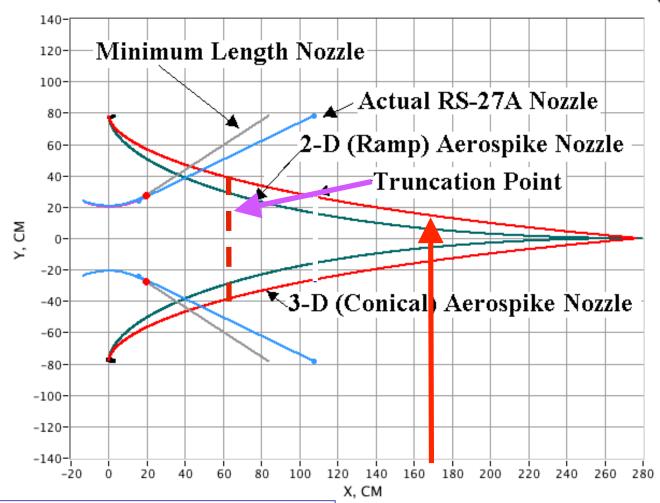
$$X_{x} = \frac{R_{exit} - R_{x}}{\tan(v_{e} - v_{x} + \mu_{x})}$$

$$R_{x} = R_{exit} \sqrt{1 - \frac{\sin(v_{e} - v_{x} + \mu_{x})}{\varepsilon}} \left[\left(\frac{2}{\gamma + 1} \right) \cdot \left(1 + \frac{\gamma - 1}{2} M_{x}^{2} \right) \right]^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Note "Square Root"
Sign

Include 2-D Spike Contour on Plot

RS-27A, Comparisosn of Actual Nozzle, Minimum Length Nozzle, Full 3-D Aerospike Nozzle of Equivalent Expansion Ratio, and Aerospike Nozzle Truncated to Actual RS-27A Nozzle Length, 2-D aerospike



Operating Altitude, km

0

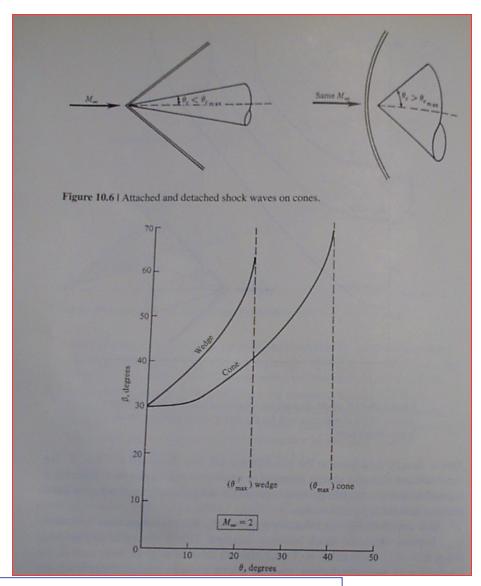
Design Altitude, km

8.16812

• 3-D "flow relief" effect

*Allows conical Aerospike to "turn corner" faster than 2-D spike and still preserve isentropic flow

Physical Aspects of Cone Flow (Anderson)



- Three-dimensional "relieving" effect
- Cone shock wave is
 Effectively weaker
 Than shock wave for
 Corresponding wedge angle