KGW-1 (later re-designated as LTV-N-2) was the US Navy’s version of American flying bomb *JB-2 Loon*. It was developed to be carried on the aft deck of submarines in watertight containers. The first submarine to employ them was the **SS-348 Cusk** which successfully launched its first Loon on 12 February 1947 in **Point Mugu, California**. It has the following data:

- Static thrust 2200 N with air inlet speed of 180 m/s @ Sea Level
- Intake area 0.145 m²
- Fuel is standard 80-octane gasoline having heating value $Q_R = 40$ MJ/kg
- Burner efficiency 0.90
- Typical flight duration is 1800 s
- Exhaust temperature 735 K

Assume Nozzle Optimized for Sea Level
Homework 4.2 (2) Part 1

Assume specific heat of air \(C_{p_a} = 1.005 \frac{kJ}{kgK} \) and specific heat of hot gases \(C_{p_h} = 1.12 \frac{kJ}{kgK} \)

Calculate

1. Air mass flow rate into engine
2. Exhaust velocity
3. Maximum temperature inside the engine
4. Maximum pressure
5. Thrust specific fuel consumption (TSFC)
6. Average range \(\text{Launch Weight} = 2,150 \text{ kg} \)
7. Mean L/D for (Sea Level) Cruise Conditions

Assume Stagnation
Homework 4.2, Part 2

A ramjet operates at an altitude of 10,000 m ($T_a = 223 \, K$, $P_a = 0.26 \, atm$, $\gamma = 1.4$) at a Mach number of 1.7. The external diffusion is based on an oblique shock and on a normal shock, as described in the shown figure.

Calculate

- Stagnation pressure recovery, $\frac{P_{02}}{P_{0a}}$?
- At what Mach number does the oblique shock become detached?
- What is the distance x, from the cone tip to the outer inlet lip, for the condition described in the figure?
- What is the best turning angle θ in terms of highest pressure ratio, $\frac{P_{02}}{P_{0a}}$?

Assume $\infty = a$