

- The design turbine inlet temperature, $T_{04} = 2000 K (1726.85 \circ C)$
- The design compressor ratio range, $\pi_c = 2-10$.
- Relevant area ratios are $A_2/A_4^* = 9.65$ and $A_2/A_{1throat} = 1.45$.
- Inlet throat area $A_{1Throat} = 2000 \text{ cm}^2 (50.463 \text{ cm}, 19.87)$ diameter)
- Assume the compressor, burner and turbine all operate ideally.
- *Converging/Diverging type Nozzle with choked throat*
- Stagnation pressure losses due to wall friction in the inlet and nozzle are negligible.
- *Octane (Gasoline) Fuel,* $h_f = 49.47 \text{ MJ/kg}$

Part 1. Assume sonic nozzle exit, CALCULATE

- Compressor Operating Line, Plot π_c vs. Corrected massflow, $\pi_c = 2 \rightarrow 10$ *a*)
- Overlay Operating Line on J-85 Compressor Map b)
 - You can manually plot Operating line on Map Image or Use .xls file link for Compressor map
 - What is the Design Operating Condition at 100% Rotor Speed ٠
 - (corrected massflow, compression ratio)
 - Plot the Engine Surge and Choke Margins as a function of % Rotor Speed
 - Surge Margin = $100\% \times \left(\frac{\dot{m}_{w} \dot{m}_{surge, choke}}{\dot{m}_{w}}\right)$

Plot Diffuser Throat, Compressor face Mach numbers, AND Inlet Capture Area vs π_c *c*)

Plot Fuel-to-Air Ratio (1/f) vs. π_c , as required to maintain T_{04} at 2000 K d

$$f = \frac{\tau_f - \tau_\lambda}{\tau_\lambda - \tau_r \cdot \tau_c}$$

MAE 6530 - Propulsion Systems II

Part 2. Optimal Design

 $Op = 100\% N_I$ Design Operating Point π_c

- a) For $\pi_c = Op$ CALCULATE to Optimal Nozzle expansion ratio, A_{exit}/A_8^*
 - Using Optimal Nozzle expansion ratio ((a) $\pi_c = Op$), Plot Nozzle Exit Pressure Ratio, p_{exit}/p_{∞} , vs. vs. π_c
- b) Using Optimal Nozzle expansion ratio ((a) $\pi_c = Op$), Plot Normalized Thrust vs. π_c
 - Normalized Momentum Thrust
 - Normalized Pressure Thrust
 - Normalized Total Thrust
- c) Using Optimal Nozzle expansion ratio ((a) $\pi_c = Op$), Plot
 - True Thrust vs. π_c
 - Corrected and True Compressor Massflow vs. vs. π_c
 - Nozzle Exit Massflow vs. vs. π_c

MAE 6530 - Propulsion Systems II

Part 3. Efficiencies

- a) For Optimal Expansion ratio at $\pi_c = Op$ Plot
 - Specific Impulse vs. π_c
 - TSFC vs. π_c
 - Propulsive (Mechanical) Efficiency vs π_c
 - Thermal Efficiency vs π_c
 - Total Efficiency vs π_c
 - Include effects of air-to-fuel ratio
 - See section 4.1, slides 19 & 21

MAE 6530 - Propulsion Systems II

Medicinical & Flarospece Engineering

UtahState UNIVERSITY

UtahState

Medientel & Ferosoering

Questions??