

- Engine operates at a free stream Mach number, $M_{\infty} = 0.8$.
- Cruise Altitude is in the stratosphere, 11 km so $T_{\infty} = 216.65$ K.
- The design turbine inlet temperature, $T_{04} = 1944 K$
- The design compressor ratio, $\pi_c = 20$.
- Relevant area ratios are $A_2/A_4^* = 10$ and $A_2/A_{1throat} = 1.2$.
- Inlet throat area $A_{1Throat} = 20 \text{ cm}^2$
- Assume the compressor, burner and turbine all operate ideally.
- Nozzle is of a simple converging type with choked throat, $A_{8}^{*}=A_{exit}$
- Stagnation pressure losses due to wall friction in the inlet and nozzle are negligible.
- → CALCULATE True & Corrected
- \rightarrow a) Correct Compressor Massflow and M_2 at compressor face
- → b) Normalized exit pressure thrust, momentum thrust, and total thrust
- \rightarrow c) Velocity ratio across Engine V_{exit}/V_{∞}
- \rightarrow d) Mach number at diffuser throat, $M_{1throat}$
- → e) Inlet capture area
- → f) Total Thrust, Isp, TSFC

 $f \simeq 50$

• Calculate the Associated enthalpy of the fuel뺭

MAE 6530 - Propulsion Systems II

- Now allow an expandable *Nozzle where,* $A_{exit} \ge A^*_{8}$
- → CALCULATE
- \rightarrow a) Optimal expansion ratio for nozzle $A_{exit} \angle A_{8}^*$
- \rightarrow b) c) Velocity ratio across Engine V_{exit}/V_{∞}
- \rightarrow c) thrust, Isp, TSFC of optimal nozzle,

Optimal Nozzle

- → d) Assuming the same combustor temperature and inlet throat area as previous page
 - \rightarrow At what compressor demand π_c does the inlet throat choke (@ Al_{throat})
 - \rightarrow Plot the Compressor operating line $\rightarrow \pi_c$ vs corrected massflow, $f(M_2)$ for $1 \leq \pi_c < \pi_c$ @ choke
 - → Plot the capture area A_{∞} vs corrected massflow, $f(M_2)$ for $1 \leq \pi_c < \pi_{c}$ @ choke